
Webserver Stress Tool ¶ i

Welcome

Welcome to Webserver Stress Tool (Freeware)

Most websites and web applications run smoothly and correctly as long as only one

user (e.g., the original developer) or just a few users are visiting at a given time. But

what happens if thousands of users access the website or web application at the same

time?

Using Webserver Stress Tool, you can simulate various load patterns for your

webserver which will help you find problems in your webserver set up. With steadily

increasing loads (so called ñramp testsò) you are able to find out how much load your

server can handle before serious problems arise.

ii ¶ Webserver Stress Tool

Contents

Welcome i

Welcome to Webserver Stress Tool (Freeware) ...i

Introduction: Testing Basics 5

Why testing? .. 5
The Business View .. 5
The Technical View .. 6

Performance, Load, or Stress Testing? .. 7
Performance Tests ... 7
Load Tests ... 7
Stress Tests .. 7
Ramp Tests .. 8

Calculation of Load and Load Pattern ... 8
For Existing Websites.. 8
For New Websites ... 8
Playing With Numbers .. 8

When Should I Start Performance Testing? ... 9
Glossary ... 9

Webserver Stress Tool Features 11

Key Features .. 11
How much load can Webserver Stress Tool generate? .. 11
Webserver Stress Tool can be used for various tests ... 11
Testing Elements ... 12
Test results can be viewed as ... 12
Other Features .. 13

Installation 14

System-Requirements .. 14
Installation/Deinstallation .. 14

Configuring Webserver Stress Tool 15

Selecting the Test Type and the Number of Users ... 15
Test Type ... 15
User Simulation ... 16
Project/Scenario Comments, Operator .. 17

Selecting the URLs or Editing the URL Script .. 17

Webserver Stress Tool Contents ¶ iii

Using Simple URL Sequences ... 17
Choosing the URL Sequencing ... 18
Using the URL Recorder ... 19
Setting Up the Data Merging Feature .. 20
Tutorial for Data Merging ... 20

Using Custom URL Scripts for Advanced URL Sequences .. 22
OnBeforeClick ... 22
OnBeforeClick Samples .. 23
OnAfterClick ... 23
OnAfterClick Samples ... 24
OnBeforeRequest .. 24
OnBeforeRequest Samples .. 24
OnAfterRequest ... 24
OnAfterRequest Samples .. 25

Advanced URL Script Samples ... 25
Reading a TOKEN from a page and reusing it on subsequent requests 25
Load-Testing SOAP Servers ... 26

URL Script Function Reference... 28
Global Variables .. 28
String Functions .. 29
Date/Time Functions ... 31
Arithmetic Functions ... 33
Filehandling Functions .. 33
Other Functions ... 33
Constants ... 33

Setting the Browser Simulation Parameters... 34
Browser Simulation ... 34
Recursive Browsing... 35

Setting Program Options .. 35
Advanced Settings ... 36
Logging ... 36
Local IP Addresses to use .. 37
Timer ... 37

Performance Tips&Tricks 38

Finding the Bottleneck of Your Test Setup ... 38
Network Issues... 38
Test Client Issues ... 39

Running the Test 40

Reviewing Logfile Results 42

Summary Log and Detailed Log .. 42
User Logs ... 43
Results per User ... 43
Results per URL .. 44

Analyzing Graphical Results 46

Graph Basics .. 46
Usage of the Graphs ... 46

Hiding Graph Lines ... 46
Zooming/Panning Graphs .. 46
Graphôs Context Menu .. 46

iv ¶ Contents Webserver Stress Tool

Graph Click Times & Errors (per URL) .. 47
Graph Click Times, Hits/s, and Clicks/s .. 48
Graph Hierarchy .. 48
Graph Spectrum of Click Times .. 50
Graph Server and User Bandwidth .. 51
Graph Open Requests and Traffic.. 52
Graph Protocol Times .. 52
Graph Test Clientôs Health .. 53

Creating Reports 55

Report (Word) .. 55
Report (HTML) ... 56

Additional Features 58

Working with Different Test Scenarios ... 58
Command Line Interface ... 58
Running Several Tests at Once .. 58
Using Tokens ... 58

Tips and Tricks 59

Check out the Paessler Knowledge Base ... 59
Recording HTTP URLs for Complex Web Applications .. 59

Appendix 59

Script Syntax for URL Scripts ... 60
Basic syntax ... 60
Script structure .. 60
Identifiers... 60
Assign statements .. 60
Character strings .. 61
Comments .. 61
Variables .. 61
Indexes .. 61
Arrays .. 61
if statements ... 62
while statements .. 62
loop statements .. 62
for statements .. 63
select case statements .. 63
function and sub declaration .. 64
Additional Functions ... 64

Useful RFCs .. 64

Webserver Stress Tool ¶ 5

Introduction: Testing Basics

Why testing?

The Business View

Many websites today have a serious business missionðto make money. And

whether thatôs through providing custom content and proprietary services,

through advertising opportunities, or by selling retail products, these high-traffic

websites and applications need to be up and running at all times. Because if

performance slows even a little, fickle web users are likely to jump quickly to a

competitorôs site.

The message to website owners is clear: Test and monitor your website!

Few websites, if any, perform exhaustive testing. Usually focused solely on

catching bugs, many websites ignore functionality testing, usability testing and

performance testingðthree critical elements in defining the user experience with

a website or web application. In short, webmasters and developers should not

only test for bugs, test whether the website does what it is meant to do

(functionality testing) and test whether the user is able to easily accomplish tasks

and objectives on the website (usability testing), but they must also test whether

the user gets results from the website in an acceptable time (performance

testing).

Performance testing is a critical component of your website or web

applicationôs overall success. From a performance standpoint, your goal is

to ensure that your end-userôs or customerôs mouse click is not met with

silence. Optimize your web server so that that 95% of all web requests are

processed in less than 10 seconds.

6 ¶ Introduction: Testing Basics Webserver Stress Tool

Jakob Nielsen, one of the foremost experts on software and website usability,

suggests the following performance thresholds for your website and or web

application:

Download Time Userôs View

< 0.1 s User feels that the system is reacting

instantaneously.

< 1.0 s The user experience is not

compromised. Although the user is

unhappy with the wait, they are still

focused on the current web page.

< 10 s As wait times get close to 10s, studies

have shown that the likelihood of user

distraction increases greatly

> 10 s User is most likely distracted from the

current website and loses interest.

Webserver Stress Tool allows you quickly ascertain and identify performance

problems so that you can quickly correct them to prevent user dissatisfaction and

potential loss of revenue.

Through an intuitive interface, flexible testing parameters, and comprehensive

reporting, Webserver Stress Tool provides you the tool to include performance

testing as a regular part of website and web application maintenance and

deployment.

Once your webserver has been deployed with the correct configurations (based

upon performance testing), you may also consider deploying a 24/7 monitoring

application. Paesslerôs PRTG Network Monitor (http://www.paessler.com) can

help you keep a constant, vigil eye on your investment in web architecture

technology.

The Technical View

Although Webserver Stress Tool and performance testing in general solve key

business issues such as up-time, user experience, and ROI, performance testing

has a number of technical considerations to ensure that those business issues are

resolved. For example, consider the following questions

¶ Is your webserver prepared for the traffic you are expecting?

¶ Is your webserver prepared for increasing visitors over the months

and years to come?

¶ Can your webserver survive a massive spike in user traffic (e.g., if

your website is mentioned on national TV or your company emails

a newsletter to all customers and prospects)?

¶ How many users can your webserver handle before users start

getting error messages or server timeouts?

¶ How many seconds does it take for a visitor to your website to

receive a page after clicking on a link? Under normal conditions?

Under heavy conditions?

¶ Does your application or shopping cart support simultaneous users?

¶ Are your scripts and databases optimized to run as quickly as

possible and do they interact with each other correctly under heavy

webserver loads?

¶ Is the web hosting service doing a good job?

http://www.paessler.com/

Webserver Stress Tool Introduction: Testing Basics ¶ 7

¶ Is your webserverôs bandwidth sufficient?

¶ Is your server hardware sufficient?

Performance testing, as a valuable aspect of maintaining and growing the web

portions of your business, is about answering these questions. To do an adequate

job of representing your company to the world with your website, you need to

discover the answers to all of these questions!

Performance, Load, or Stress Testing?

Although many network technicians use these word synonymously, there are

subtle but important differences.

Performance Tests

Performance tests are used to test each part of the webserver or the web

application to discover how best to optimize them for increased web traffic.

Most often this is done by testing various implementations of single web

pages/scripts to check what version of the code is the fastest.

Webserver Stress Tool supports this type of test with the ability to run several

(e.g. 20-100) simultaneous requests on one URL and record the average time to

process those requests. By changing your website or application code under

repeated tests, you can discover critical issues to address for optimal

performance. Usually, this type of test is run without requesting page images in

order to concentrate the testing on the script and code itself.

Load Tests

Load tests are performed by testing the website using the best estimate of the

traffic your website needs to support. Consider this a ñreal world testò of the

website.

The first step is to define the maximum time it should take (from a usability and

customer experience standpoint, not a technical one) for a page to load. Once

you have determined this, you need to calculate the impact of exceeding that

maximum timeðwill you lose sales? Will you lose prospective customers? A

good rule of thumb is to make certain that no website visitor waits longer than

ten (10) seconds for a web page to load.

Once this threshold has been determined, you have to calculate the anticipated

load and load pattern for your website which you can then simulate through

Webserver Stress Tool. See the Calculation of Load and Load Pattern section for

details on load and load pattern calculation.

At the end of the load test, you can compare the test results with your maximum

request time threshold. When some page requests take longer than the target

times or generate error messages, it is clear that there is work to do to the

application and webserver.

Stress Tests

Stress tests are simulated ñbrute forceò attacks that apply excessive load to your

webserver. ñReal worldò situations like this can be created by a massive spike of

users ïcaused by a large referrer (imagine your website being mentioned on

national TVé). Another example would be an email marketing campaign sent to

prospective customers that asks them to come to the website to register for a

service or request additional information. An inadvertent denial of service to

8 ¶ Introduction: Testing Basics Webserver Stress Tool

prospects who are ready to learn more about your product could have a serious

impact on your bottom line.

The purpose of a stress test is to estimate the maximum load that your webserver

can support. Webserver Stress Tool can help you learn the traffic thresholds of

your webserver and how it will respond after exceeding its threshold.

Ramp Tests

Ramp Tests are variations of Stress Tests in which the number of users is

increased over the life of the testðfrom a single user to hundreds of users. By

reviewing the graphs of click times and errors, a Ramp Tests can help you

determine what maximum load a server can handle while providing optimal

access to web resources

Calculation of Load and Load Pattern

Calculating the load and load pattern is probably the trickiest issue in conducting

website performance tests.

First, remember that there is a difference between users, transactions, page views

and hits:

¶ One user can conduct several transactions (e.g., visit a homepage,

search for a product, view a productôs details, buy a product, etc.)

¶ One transaction can create several page views (e.g., add products to

the shopping cart, go to the checkout, enter credit card, etc.)

¶ One page view can create multiple hits (e.g., framesets, images,

applets, etc. for a single webpage)

For Existing Websites

If you already have your website online, a good way to start calculating the load

and load pattern is to use a good log file analyzer on the log files produced by

your webserver. Web log file analyzer tools will help you determine how many

people access the site per day and per hour, what pages/scripts are used how

often, etc. These logs will help you determine how many visitors and page views

you have at specific times of the day as well as what your busiest day/time is and

what pages are most popular.

For New Websites

If you are working on a new website, you have to ascertain load and load pattern

yourself. One way to define the load pattern is:

¶ Step 1: Come up with the target number of users.

¶ Step 2: Define a couple of different ñmodel usersò (e.g., teenager,

business professional, senior citizen, etc.) and surf from their point

of view through the website. Track the web pages they access and

gather these stats.

Playing With Numbers

At the end, you should have a list of URLs and their frequency of use.

Try to answer the following question for each test scenario:

Webserver Stress Tool Introduction: Testing Basics ¶ 9

¶ How many users constitute a normal load? How many users

constitute a peak load? How many, in each load, were

simultaneous?

¶ How much time elapses between each user click?

¶ What URLs are visited the most?

¶ Are there any ñpathsò through the site? A path is defined as a per-

defined or intuitive manner (through a specific sequence of URLs)

to access resources on your site.

Remember to factor into your analysis that there could be spikes in your traffic

(i.e., a holiday promotion or new advertising campaign).

Now feed this data into Webserver Stress Tool, hit ñStart Testò, and keep your

fingers crossed!

When Should I Start Performance Testing?

The answer is simple: You cannot start performance testing early enough

when building web applications!

For instance, itôs even a good idea to start performance testing before a single

line of code is written. By testing the base technology (network, load balancer,

application, database, and webservers) early on for the load levels you plan to

support, you can better optimize your webserver and potentially avert business

costs (i.e., lost sales) later on. Discovering that your hardware configuration is

inadequate when the application is deployed can be very expensive to correct.

Testing the server for its maximum stress level before development begins is an

excellent idea.

The costs for correcting a performance problem escalate as the development

process moves forward. For instance, discovering a performance problem after

an application or website is already deployed means countless man hours to

correct the server issueðman hours that were already spent configuring the

webserver (or application) the first time.

During software development, all software engineers (and the quality assurance

team) should have access to performance test tools to test their own code for

performance and for parallel execution problems (e.g., problems caused by

database locks or other mutexes). Software engineering managers for web

projects are realizing that each developer must be responsible for both the

functionality and performance of code.

As soon as several web pages are working, the first load tests should be

conducted by the quality assurance team. From that point forward, performance

testing should be part of the regular testing routine each day for each build of the

software.

Glossary

Here are some glossary terms used very often in the manual and inside the

software:

¶ Click

A simulated mouse click of a user sending a request (one of the

URLs from the URL list) to the server and immediately requesting

any necessary redirects, frames, and images (if enabled).

¶ Request

An HTTP request sent to the server regardless of an answer.

10 ¶ Introduction: Testing Basics Webserver Stress Tool

¶ Hit

A completed HTTP request (i.e., sent to the server and answered

completely). Hits can be the PAGE request of a "click" or its

frames, images, etc.

¶ Time for DNS

Time to resolve a URL's domain name using the client system's

current DNS server.

¶ Time to connect

Time to set up a connection to the server.

¶ Time to first byte (TFB)

Time between initiating a request and receiving the first byte of

data from the server.

¶ Click Time

The time a user had to wait until his "click" was finished (including

redirections/frames/images etc.).

¶ Click Delay

The time a user needs to view the webpage he just downloaded

until he initiates the next click.

¶ User Bandwidth

The bandwidth a user was able to achieve.

¶ Sent Requests

Number of requests sent to the server during a period.

¶ Received Requests

Number of answers received from the server during a period.

Webserver Stress Tool Webserver Stress Tool Features ¶ 11

Webserver Stress Tool Features

Key Features

Webserver Stress Tool simulates anywhere from a few users to several hundred

users accessing a website via HTTP/HTTPS at the same time.

Based on a set of URLs or using a VBScript the software simulates independent

users requesting webpages from that URL including images, frames etc.

Each user is simulated by a separate thread with its own session information (e.g.

cookies are stored individually for each user). URLs can be parameterized for

each user and the sequence of URLs can be varied.

How much load can Webserver Stress Tool generate?

We have successfully tested Webserver Stress Tool with

¶ more than ~500 MBit/s network load,

¶ more than ~1.000.000 page views per hour and

¶ up to 10.000 simultaneous users

but the actual load you can achieve is highly dependent on your network

infrastructure, your server/client hardware, the file sizes, and your web

application.

Webserver Stress Tool can be used for various tests

¶ Performance Tests are used to test each part of the webserver or

the web application to discover what parts, if any, are slow and

how you can make them faster. Most often this is done by testing

various implementations of single web pages/scripts to determine a

configuration of code that is the fastest.

¶ Load Tests are performed by testing the website using the best

estimate of the traffic your website must support. Consider this like

a ñreal worldò test of the website.

¶ Stress Tests are simulated ñbrute forceò attacks that apply

excessive load on your webserver. Real world situations like this

can be created by a massive spike in users caused, innocently

enough, by a new advertising campaign.

¶ Ramp Tests are used to determine the maximum threshold of users

that can be served before error messages are produced.

12 ¶ Webserver Stress Tool Features Webserver Stress Tool

¶ Other custom tests are also possible, e.g., tests to make sure that

web pages can be requested simultaneously without problems,

database deadlocks, semaphores etc.

Testing Elements

Webserver Stress Tool aggregates a number of different testing elements to help

you get a holistic view of your entire website/webserver/application

performance.

¶ Click Time: A simulated userôs mouse click that sends a request

(one of the URLs from the URL list) to the server and immediately

requesting any necessary redirects, frames, and images (if enabled).

The click time is calculated as the time between when the user

clicked and when the server delivered the requested resources with

all referenced items (images etc.).

¶ Average Click Times: The average values per URL, per user, or per

website

¶ Time for DNS: Time to resolve a URL's domain name using the

client system's current DNS server.

¶ Time to connect: Time to set up a connection to the server.

¶ Time to first byte (TFB): Time between initiating a request and

receiving the first byte of data from the server.

¶ Request Time (TLB, Time to last Byte): Time for a single HTTP

request (i.e,. HTML page, image, frameset etc.).

¶ User/Server Bandwidth: The bandwidth a user and a server were

able to achieve.

¶ Sent Requests: Number of requests sent to the server during a

period.

¶ Received Requests: Number of answers received from the server

during a period.

¶ Open Requests: Number of open request for a given moment.

¶ Error rates: Number of failed request per time period, per user, or

per URL.

¶ Webserver Stress Tool generates the applicable data elements for a

specific test into a CSV-format log file for easy viewing.

Test results can be viewed as

Webserver Stress Tool also provides several ways to view results.

¶ Several easy to use graphs

¶ Summary Log

¶ Detailed Log

¶ User Log for each user

¶ Machine readable request log (CSV)

¶ Raw graph data (CSV)

Webserver Stress Tool Webserver Stress Tool Features ¶ 13

Other Features

¶ Built-in report generator: Reports can be generated as HTML files

and MS WORD documents.

¶ Includes a URL recorder (complete web browser) to select the

URL(s) you want to test (rather than typing them into a list).

¶ Works on any HTTP-URL or HTTPS-URL and can test any script

(CGI, ASP, PHP, etc.)

¶ Can also be used to test requests of larger download files (e.g.,

ZIP).

¶ Works with any webserver (no part of the software has to be

installed on the server!).

¶ Includes support for

¶ proxies (not for HTTPS) with optional proxy authentication

¶ basic user authentication (username/password)

¶ useragent string

¶ any HTTP request header lines

¶ Individual cookie handling for each simulated user (e.g,. ASP-

Session-IDs)

¶ redirected requests and " http-meta-refresh " redirections

¶ several IPs for the client machine (up to 5000 IPs)

¶ data rate throttling (e.g., to simulate users accessing the server

via a slow modem line)

¶ timeouts (e.g. to simulate surfers that click away after 20

seconds without answer of the server)

¶ When testing more than one URL, several URL selection methods

can be selected to simulate different user behavior

¶ Using a VBScript the URLs used for testing and various other

parameters can be set individually

¶ Tests can run

¶ until a specified number of clicks is reached for each user

¶ until a specified time has passed

¶ Test can be started at a specified time

¶ Optional link checker can check all URLs for validity

¶ Test results can be stored into a ZIP for later reference

14 ¶ Installation Webserver Stress Tool

Installation

System-Requirements

The following Windows versions are supported:

¶ Windows XP

¶ Windows 2003 Server

¶ Windows Vista

¶ Windows 7

¶ Windows 2008 R2

¶ 32bit and 64bit versions are supported

Additionally, you need a TCP/IP based network and a powerful test client

machine.

Please also refer to the Performance Tips&Tricks Section!

Installation/Deinstallation

To install Webserver Stress Tool, run the setup.exe from the distribution .ZIP
file. It is a common setup routine that should be completely self-explanatory.

To uninstall the software at a later time, use the Add/Remove Software applet

from Windowsô Control Panel.

After deinstallation, please check the installation directory (usually c:\program

files\Webserver Stress Tool) for any files that must be deleted manually. The de-

installation process does not remove files that were created by the user (e.g., log

files).

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 15

Configuring Webserver Stress
Tool

Find the Webserver Stress Tool group in your Programs Menu and select

Webserver Stress Tool to start the program.

Selecting the Test Type and the Number of Users

When you start Webserver Stress Tool for the first time, you will be

automatically directed to the Select Number of Users and Test Type

window. You can also click on ñTest Typeò in the left toolbar to access this

panel:

This window allows you to enter the main test settings for the load pattern you

want to simulate.

Test Type

Webserver Stress Tool offers three main test types:

16 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

¶ CLICKS: the test is finished when each user has initiated the given

number of clicks. CLICKS tests are the right choice to test specific

URL sequences.

¶ TIME: tests that run for a specified number of minutes. A timed

test is often used for ñburn in testsò, e.g., to keep a server under full

load for 10 hours.

¶ RAMP: Ramp tests also run for a specified time, but with

increasing load from 1 user to the specified number of users which

is reached at 80% of test time. During the last 20% the full number

of users is active. A Ramp Test is a great way to find out the

limitations of your webserver or web application.

User Simulation

Please enter the Number Of Users Webserver Stress Tool should simulate.

This is the number of users that simultaneously use your website.

The Number of Users can be a value between 1 and 10,000. But remember

that the maximum number of simultaneous users that can be successfully

simulated depends on the computing power of the client machine running

Webserver Stress Tool and various parameters that you set later.

Webserver Stress Tool always shows the CPU load in the status bar at the

bottom and also generates a ñclient healthò chart during the test. If your client

machine runs at 100% CPU load, you have hit your machineôs limit.

Next, you have to enter the Click Delay time for the simulated users. This

setting is as important as the Number of Users. The lower the delay time

between clicks, the greater the level of stress on your webserver.

Look at the ñestimated loadò calculation below the ñclick delayò setting to see

what load your settings will create.

Important: These two values are the most critical values you will
enter!

To create the highest possible load, set the delay time between clicks to 0 (zero).

This way Webserver Stress Tool will send the next user request immediately

after the previous request is finished. Please note: When using the value of zero,

a setting of 40-80 users should be enough for most tests (higher values can

decrease the load because of multithreading overhead).

By enabling Random Click Delay you can tell Webserver Stress Tool to

randomly use a delay time between two clicks that is between 0 seconds and the

number of seconds you entered in Click Delay. This will make the test pattern

even more dynamic but a little less reproducible.

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 17

Project/Scenario Comments, Operator

This is a great place to enter information about the test (i.e., parameters, reason

for test, etc.). This comment will be inserted into test reports later and can help

you to recreate the test later if necessary.

Selecting the URLs or Editing the URL Script

Click on the URLs button in the left hand toolbar to display the Select URLs

Window:

You have two options to set the URLs for the test:

¶ Simple URL Sequence: For most simple tests, you can simply

enter your URLs here and choose an URL sequencing option.

¶ Custom URL Script: For more complex tests, you can also write

a VB Script that selects the URLs and other parameters.

Using Simple URL Sequences

Please enter your URLs (and ï if needed ï the other parameters for

POSTDATA, usernames and password) into the table of URLs.

Here is a description of each field:

¶ Name: Select a descriptive Name for each URL entry. This name

will be used in the graphs and in the logfiles (e.g. ñHomepageò,

ñSearchò, ñShopping Cartò, ñCheckoutò etc.)

18 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

¶ Click Delay: Enter the time the simulated user will take to ñread

the previous pageò. The simulated users will wait for this time (in

seconds) after the previous URL has finished loading until this next

URL will be clicked.

¶ URL: Enter the URL using the standard format

http://servername[:port]/path?get-params. Here are some

samples:

http://www.server.com/home

http://www.server.com:8080/myfolder/myfile.php

http://www.server.com/signupform.cgi?username=name

¶ POSTDATA: Usually, Webserver Stress Tool creates GET

requests. If you enter data into this column the request will be sent

as POST request using the data that you provide (must be URL

encoded). You can also use the content of a file for the

POSTDATA by entering the filename with ñ@ò at the beginning
and at the end, e.g. @mypostdata.txt@. Note: This file must

reside in the folder of the webstress8.exe file.

¶ Username/Password: If you use BASIC authentication (see

Hypertext Transfer Protocol -- HTTP/1.0,

http://www.ietf.org/rfc/rfc1945.txt, RFC 1945 for an explanation of

BASIC authentication), enter the Username and Password for

the URL here. With BASIC authentication, the login data is sent as

part of the HTTP header in clear text. This will obviously not work

for login mechanisms that use HTML FORMs. You have to

simulate these logins using GET/FORM data. Note 1: NTLM or

other authentications are not supported. Note 2: Donôt mix up

HTTP authentication and login mechanisms that use HTML forms.

¶ Note: from RFC 2617: "HTTP/1.0" includes the specification for a

Basic Access Authentication scheme. This scheme is not

considered to be a secure method of user authentication (unless

used in conjunction with some external secure system such as

SSL), as the user name and password are passed over the network

as clear text.ò

While editing the list you can use the following buttons:

¶ Click Add URL to add another line for a new URL at the bottom

(you can also directly set the Number of URLs in the edit box).

You can use up to 1000 URLs.

¶ Click Delete URL to delete the currently selected URL.

¶ With Clear URLs you can clear the complete list.

¶ The easiest way to get this list of URLs is to use the URL
recorder (see below).

¶ Also the Data Merging feature is explained below.

Choosing the URL Sequencing

This setting determines how Webserver Stress Tool assigns the URLs to the

users during the test.

There are 4 options:

http://www.server.com/home
http://www.server.com:8080/myfolder/myfile.php
http://www.server.com/signupform.cgi?username=name
http://www.ietf.org/rfc/rfc1945.txt

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 19

¶ Users select URL for each click randomly: Using the built

in random function, Webserver Stress Tool simply selects one of

the URLs for each click. Depending upon your website, this can be

a good setting to create ñreal worldò loads.

¶ Users always click the same URL: In the beginning of the

test, each user selects a URL and clicks only this URL during the

test. To spread the load evenly on all URLs, set the number of users

to the number of URLs or a multiple of that. This setting is very

useful in comparing the request times of different webpages (e.g.,

with different implementations of a feature) or to find out what

pages are slower than others.

¶ Users follow complete sequence: All users will use URL#1

for the first click, URL#2 for the second click and so on. If a user

reaches the last URL he will start with URL#1 again. Use this

setting to simulate paths through your website, e.g., to put products

into an order from a shopping cart.

¶ Users visit first X URLs, then random, then last X URLs:

All users will use the first X URLs (top to bottom). After that, the

remaining URLs are assigned randomly. For CLICKS tests you

have the additional option to set a number of URLs at the bottom of

the URL list the users should visit at the end of the test. This would

be an appropriate test pattern if you have a website in which users

have to login using a couple of URLs, then surf around and log out

at the end.

Using the URL Recorder

Webserver Stress Tool offers a ñclick recorderò to build the list of test URLs.

Click on URL Recorder to start the click recorder:

Simply enter the first URL in the URL edit field and click on Go!. Watch the list

of URLs in the lower part of the window. Every time you click a link on the

browser window or submit a FORM, the URL is appended to the list.

If a POST request is submitted, the POST data is also saved. If a page is a

frameset, all URLs of the frameset are added to the list.

If a click opens a new window, Webserver Stress Tool will also open a new

window and record further clicks.

20 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

You may edit the list of URLs using Add URL, Delete URL, and Clear
URLs.

Please note: In the upper part of the window, the ñInternet Explorer OCX

Controlò is called as the web browser which uses the currently installed version

of IE on your system.

Setting Up the Data Merging Feature

To be more flexible with the URLs or to bypass caching mechanisms (e.g., of a

web, application, or proxy server in your test setup), Webserver Stress Tool

offers the possibility to merge additional dynamic data into the requested URLs.

Unique numbers in URL(s): Use this feature to have a unique number in the

URL of each request (e.g., ñcachebuster=@@ò to bypass caching mechanisms).

Simply place the placeholder "@@" in the URL string(s) and it will be replaced

by a number. The numbers are ascending and unique for all users and clicks.

Replace placeholders with data from file: Use this feature to place data

from text files into URLs, POST-Data, Username or password. This can be used

to simulate transactions or to bypass caching mechanisms.

Choose between one file for all placeholders of all URLs (i.e., "data.dat" in the

directory of the EXE-file) or a file for each URL (i.e., "data1.dat" for URL1,

"data2.dat" for URL2, etc.).

You can edit the files by clicking Edit "data.dat" and Edit "datax.dat"
respectively.

If you need to edit the files manually, please keep in mind the following. Files

must be comma delimited text files. The placeholders are "@1@" for column 1

of the current comma delimited line, "@2@" for column 2, etc. For each user,

one line is read from the data files. If the end of a data file is reached, the file is

reread from the beginning.

Note: If there are spaces in a column, please use quotation marks around the data

and double quotation marks for a single quotation mark, e.g.:

1,"one and two",3,4,"four and five","This "" is a quotation mark"

Tutorial for Data Merging

Letôs assume you have three URLs a user is required to go through to login into

your site and do something.

¶ http://myserver/homepage.htm (standard homepage with a login

form)

http://myserver/homepage.htm

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 21

¶ http://myserver/login.htm (POST parameters are login/password,

this page sets a cookie)

¶ http://myserver/data.htm (some GET parameters)

You want to simulate 10 different users logging into the site and going through

these 3 URLs.

Using Webserver Stress Tool this can be done as follows:

¶ On page Test Setup.

¶ Select Test Type CLICKS, set number of clicks to 3, set

Number of Users to 10

¶ On page URLs

¶ Set Number of URLs to 3, select All Users follow complete
Sequence, Enter the three URLs

¶ For URL#2 enter the following in the POSTDATA column:

username=@1@&password=@2@

¶ For URL#3 change the URL like this:

http://myserver/data.htm?data=@1@

¶ Click on Data Merging

¶ Enable Replace Placeholdersé and enable Use data1.dat
for URL#1é

¶ Click on Edit "Datax.dat"

¶ Answer "Edit data for what URL" with the value 2

¶ Enter the username and password combinations into column @1@
and @2@ and click OK

¶ Again Click on Edit "Datax.dat"

¶ Answer "Edit data for what URL" with the value 3

¶ Enter the data for URL#3 into column @1@ and click OK

¶ Click OK again

¶ Review all the other settings

¶ Run your test

At first, all 10 users send a request for URL#1 which is the plain homepage.

Then each user requests the login.htm URL but with the @1@ and @2@ in the

POSTDATA field replaced by values from the file data2.dat so that every

request is sent with different login data (@1@ is replaced with data from column

1, @2@ for column 2).

If login.html sends a cookie, this cookie is stored individually for each user and

is resent with the third request..

For the third click, Webserver Stress Tool replaces the @1@ placeholder with

the strings from data3.dat, thus sending 10 different GET URLs to the server

along with the cookies received in run 2.

You can examine the log files to make sure that the data was sent in the way you

expected.

http://myserver/login.htm
http://myserver/data.htm

22 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

Using Custom URL Scripts for Advanced URL
Sequences

If simple URL sequences are not flexible enough for your testing needs, then

you should consider using Custom URL Scripts to configure Webserver Stress

Tool.

On the URLs tab choose Custom URL Script to enable this feature. A code

editor comes up where you can edit your URL Script:

A good start is to click ñDefault Scriptò, then Webserver Stress Tool will load

the built in demo script.

The script language is very similar to VBScript and description of the syntax and

a list of allowed commands can be found in the Appendix.

The script must define four main functions: OnBeforeClick, OnAfterClick,
OnBeforeRequest, and OnAfterRequest.

OnBeforeClick

OnBeforeClick is called before each "click" of a user. This event can be used

to set the URLs, image URLs, Postdata etc.

Input Parameters:

data.usernumber (Integer) Number of simulated users (first user is #0)

data.clickcount (Integer) Number of finished clicks (first click is #0)

data.requestcount (Integer) Number of finished requests (first request is

#0)

data.token (String) Use this variable to store, e.g., tokens from

one click or request to the next (see

Advanced Samples section below)

Output Parameters:

data.url (String) URL for the next click

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 23

data.addimageurl (String) Adds the given URL to the list of image

URLs that are requested after HTML is

received

data.postdata (String) POSTDATA for the next click

data.username (String) USERNAME for the next click

data.password (String) PASSWORD for the next click

data.clickdelay (integer) Time to wait before click is executed

(milliseconds)

data.log (String) If not empty this text is added to the user's log

data.soapaction (String) If you want to test a SOAP server set this

variable to the string of your SOAPAction

(see Advanced Samples Section below)

OnBeforeClick Samples

Selecting the URL based on the usernumber
if data.usernumber=0 then data.url="http://myurl" end if

if data.usernumber=1 then data.url="http://myurl2" end if

if data.usernumber=2 then data.url="http://myurl3" end if

Selecting the URL based on the clicknumber
if data. clickcount =0 then data.url="http://myurl" end if

if data. clickcount =1 then data.url="http://myurl2" end if

if data. clickcount =2 then data.url="http://myurl3" end if

Setting the image URLs from the script (instead of using the "download

images/frames etc." feature of Web Stress which is very CPU cycle consuming),

you can tell Webserver Stress Tool the URLs it should request after requesting

the main HTML. AddimageURL adds each assigned URL to the list of image

URLs.
data.addimageurl=" http://my.server.com/image1.gif"

data.addimageurl="http://my.server.com/image2.gif"

data.addimageurl="http://my.server.com/image3.gif"

Setting the Click Delay (you can set the time before this user initiates his mouse

click (in milliseconds), e.g., using a random value)
data.clickdelay=random*(10000+data.usernumber*40)

Setting POSTDATA and credentials
data.postdata= "MyPostData"

data.username="username"

data.password="password"

Writing to the userôs logfile
data.log="Preparing click #"+inttostr(data.clickcou nt+1)+" of user

#"+inttostr(data.usernumber+1)

Reading the POSTDATA from a file (please edit the filename/filepath for your

needs):
data.postdata= loadstringfromfile("D: \ temp \ mypostdata ")

OnAfterClick

OnAfterClick is called after each "click" of a user and can be used to do some

extended logging or to analyze the HTML code.

Input Parameters:

data.usernumber (Integer) Number of simulated user (first user is #0)

data.clickcount (Integer) Number of finished clicks (first click is #0)

24 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

data.requestcount (Integer) Number of finished requests (first request is

#0)

Output Parameters:

data.log (String) If not empty this text is added to the user's log

OnAfterClick Samples

Writing to the userôs logfile
data.log="Finished click #"+inttostr(data.click count+1)+" of user

#"+inttostr(data.usernumber+1)

OnBeforeRequest

OnBeforeRequest is called before each single HTTP Request of a user (i.e.,

clicks, images, frames, etc.) and can be used to log data or to alter the HTTP

headers.

Input Parameters:

data.usernumber (Integer) Number of simulated user (first user is #0)

data.clickcount (Integer) Number of finished clicks (first click is #0)

data.requestcount (Integer) Number of finished requests (first request is

#0)

data.requesttype (String) Type of Request (e.g., CLICK, IMAGE,

FRAME)

Output Parameters:

data.log (String) If not empty this text is added to the

user's log

request.additionalheader (String) Additional lines for the HTTP header

sent to the server

OnBeforeRequest Samples

Writing to the userôs logfile
data.log="Doing a "+data.requesttype+" - request for click

#"+inttostr(data.clickcount+1)+" of user

#"+inttostr(data.usernumber+1)

Adding custom text to the HTTP Header
request.additionalheader="MyOwnHeaderline"

OnAfterRequest

OnAfterRequest is called after each single HTTP Request of a user (i.e.,

clicks, images, frames, etc.) and can be used to log data and parse the results.

E.g., if you need some part of the HTML code to be reused in subsequent

requests, this is the place to extract this string from the HTML.

Input Parameters:

data.usernumber (Integer) Number of simulated user (first user is

#0)

data.clickcount (Integer) Number of finished clicks (first click is

#0)

data.requestcount (Integer) Number of finished requests (first request

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 25

is #0)

data.requesttype (String) Type of Request (e.g., CLICK, IMAGE,

FRAME)

request.html (String) Resulting HTML of this request (can be

raw GIF/JPG data for images)

request.receivedheader (String) Resulting HTTP Headers from the server

request.result (String) Result of a request (e.g., OK, Error)

request.resultcode (String) HTTP status code of a request (e.g., 200,

404, etc.)

Output Parameters:

data.log (String) If not empty this text is added to the

user's log

data.token (String) Use this variable to store, e.g., tokens

from one click or request to the next

request.additionalheader (String) Additional lines for the HTTP header

sent to the server

OnAfterRequest Samples

Writing to the userôs logfile
data.log="Finished request number " +inttostr(data.requestcount)+"

with resultcode "+inttostr(request.resultcode)+"

("+request.result+")"

The following code dumps HTML and headers into the log
data.log=data.log+crlf+"==header===================================

="+crlf+request.receivedheader+c rlf+"==============================

=============="

data.log=data.log+crlf+"==html=====================================

="+crlf+request.html+crlf+"==

===="

Writing the HTML (or any other data) of a request to a disk file. Please edit the

filename/filepath for your needs!
a=savestringtofile("d: \ temp \ Data of user number "

 +inttostr(data.usernumber)+" request number "

 +inttostr(data.requestcount)+".txt",request.html)

if a<>0 then data.log="Could not write file (result="

 +inttostr(a)+")" end if

Advanced URL Script Samples

Reading a TOKEN from a page and reusing it on
subsequent requests

The following script shows how to read some data from the HTML of a page and

the use this data in subsequent requests:

26 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

' = ==

' Webserver Stress Tool V 8 *** Sample Script for Reusing a Token

' ===

' Requires Webserver Stress Tool 8 or later

Sub OnBeforeClick

 if data . clickcount =0 then

data . url ="http://walldorf.paessler.com" end if

 if data . clickcount =1 then

data . url ="http://walldorf.paessler.com/?test=" +data . token end if

 data . log ="Preparing click #" +inttostr (data . clickcount+1) +" of

user #" +in ttostr (data . usernumber+1)

end Sub

Sub OnAfterClick

 data . log =""

end sub

Sub OnbeforeRequest

 data . log =""

end sub

Sub OnAfterRequest

 if data . clickcount =0 then 'we only look in the HTML of the first

click for our tags

 if data . requestcount =0 the n 'we only look in the HTML of the

first request of the first click for our tags

 tagbefore ="< title>"

 tagafter ="</title>" 'our tag/token delimiters

 if pos (tagbefore , request . html)> 0 then

 if pos (tagafter , request . html)> 0 then

 tagbegin =pos (tagbefore , request . html) +length (tagbefore)

 taglength =pos (tagafter , request . html) - tagbegin

 mytag =copy (request . html , tagbegin , taglength)

 data . log ="FOUND TOKEN: '" +mytag+ "'"

 data . token =mytag

 else

 data . log ="Closing Token not found (" +tagafter+ ") in

request number " +inttostr (data . requestcount) +" with resultcode

" +inttostr (request . resultcode) +" (" +request . result+ ")"

 end if

 else

 data . log ="Opening Token not found (" +tagbefore+ ") in

request number " +inttostr (data . requestcount) +" with resultcode

" +inttostr (request . resultcode) +" (" +request . result+ ")"

 end if

 end if

 end if

end sub

Load-Testing SOAP Servers

With Webserver Stress Tool you can perform load and stress tests for SOAP

Servers/SOAP Services. SOAP method calls are nothing else than HTTP

requests that send an XML dataset using a POST request to a webserver and then

receive the results as an XML string.

Even though Webserver Stress Tool is not specialized in reading and writing the

XML data for these requests, you can still use it as a load generator for your

SOAP services.

This sample shows how to use Webserver Stress Tool. to issue a SOAP request

to Googleôs web services API. Note: Of course you should refrain from load

testing Googleôs webservers!

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 27

The trickiest thing, of course, is to find out the three input parameters. You must

get this information from the SOAP serverôs documentation. For Google these

are:

HTTP URL http://api.google.com/search/beta2

SOAPACTION "urn:GoogleSearchAction"

The XML -POSTDATA for the request should be stored into a file on your disk.

To run a search request on Google the XML would be:
<?xml version="1.0" encoding="utf - 16"?>

<soap:Envelope

xmlns:soap="http://sc hemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="urn:GoogleSearch"

xmlns:types="urn:GoogleSearch/encodedTypes"

xmlns:xsi="http://www.w3.org/2001/XMLSchema - instance"

xmlns:xsd="http://www.w3.org/2001/XML Schema">

 <soap:Body

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <tns:doGoogleSearch>

 <key xsi:type="xsd:string"> *** PLACE YOUR GOOGLE API ACCESS

KEY HERE *** </key>

 <q xsi:type="xsd:string">paessler</q>

 <start xsi :type="xsd:int">0</start>

 <maxResults xsi:type="xsd:int">10</maxResults>

 <filter xsi:type="xsd:boolean">false</filter>

 <restrict xsi:type="xsd:string" />

 <safeSearch xsi:type="xsd:boolean">false</safeSearch>

 <lr xsi:type="xsd: string" />

 <ie xsi:type="xsd:string" />

 <oe xsi:type="xsd:string" />

 </tns:doGoogleSearch>

 </soap:Body>

</soap:Envelope>

Having this information we can now set up the URL script for Webserver Stress

Tool for our test. By setting a value for data.soapaction, we instruct Webserver

Stress Tool to actually send a SOAP request with content type ñtext/xmlò:

Sub OnBeforeClick

 data . url ="http://api.google.com/search/beta2"

 data . postdata =loadstringfromfile (" c:yourpath \ soaprequest.txt")

 data . soa paction ="urn:GoogleSearchAction"

end Sub

Sub OnAfterClick

 data . log =""

end sub

Sub OnbeforeRequest

 data . log =""

end sub

Sub OnAfterRequest

 data . log =""

end sub

After running, the test the results from Google can then be reviewed if you

enable ñSave HTML to filesò.

28 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

Etc.

URL Script Function Reference

Global Variables

In order to exchange data between the usersô threads (e.g., for global counters),

use these global variables:

Global Variables:

global.integer1 (Integer) Free usable global integer value

global.integer2 (Integer) Free usable global integer value

global.integer3 (Integer) Free usable global integer value

global.integer4 (Integer) Free usable global integer value

global.integer5 (Integer) Free usable global integer value

global.string1 (String) Free usable global string value

global.string2 (String) Free usable global string value

global.string3 (String) Free usable global string value

global.string4 (String) Free usable global string value

global.string5 (String) Free usable global string value

global.float1 (Float) Free usable global float/date value

global.float2 (Float) Free usable global float/date value

global.float3 (Float) Free usable global float/date value

global.float4 (Float) Free usable global float/date value

global.float5 (Float) Free usable global float/date value

Samples:

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 29

global.integer1=global.integer1+1

global.string1=global.string1+" MORE"

global.float1=now

data.log="counter="+inttostr(global.integer 1)+" "+global.string1+"

time="+timetostr(global.float1)

String Functions

Copy(S; Index, Count: Integer): string
Copy returns a substring containing Count characters or elements starting at

S[Index].
s=Copy("testtext",1,4)

Delete(var S: string; Index, Count:Integer)

Delete removes a substring of Count characters from string S starting with

S[Index].
a="testtexttext"

Delete(a,4,4)

Insert(Source: string; var S: string; Index: Integer)

Insert merges Source into S at the position S[index].
a="testtexttext"

In sert("text",a,5)

Pos(Substr: string; S: string): Integer

Pos searches for a substring, Substr, in a string, S. Substr and S are string-type

expressions. Pos searches for Substr within S and returns an integer value that is

the index of the first character of Substr within S. Pos is case-sensitive. If Substr

is not found, Pos returns zero.
a=pos("sub","textsubtest")

Length(a:string):integer
Length returns the number of characters actually used in the string or the number

of elements in the array.
a=l ength("t eststring")

UpperCase(s:string) :string
UpperCase returns a copy of the string S, with the same text but with all 7-bit

ASCII characters between 'a' and 'z' converted to uppercase. To convert 8-bit

international characters, use AnsiUpperCase instead.
a=UpperCase("Test")

LowerCase(s:string):string
LowerCase returns a string with the same text as the string passed in S, but with

all letters converted to lowercase. The conversion affects only 7-bit ASCII

characters between 'A' and 'Z'. To convert 8-bit international characters, use

AnsiLowerCase.
a=Lower Case("Test")

CompareStr(s1,s2:string):integer
CompareStr compares S1 to S2, with case-sensitivity. The return value is less

than 0 if S1 is less than S2, 0 if S1 equals S2, or greater than 0 if S1 is greater

than S2. The compare operation is based on the 8-bit ordinal value of each

character and is not affected by the current locale.

30 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

b=CompareStr("Test","test")

CompareText(s1,s2:string):integer
CompareText compares S1 and S2 and returns 0 if they are equal. If S1 is greater

than S2, CompareText returns an integer greater than 0. If S1 is less than S2,

CompareText returns an integer less than 0. CompareText is not case sensitive

and is not affected by the current locale.
b=Compare Text ("Test","test")

AnsiUpperCase(s:string):string

AnsiUpperCase returns a string that is a copy of S, converted to upper case. The

conversion uses the current locale. This function supports multi-byte character

sets (MBCS).
a=AnsiUpperCase("Test")

AnsiLowerCase(s:string):string
AnsiLowerCase returns a string that is a copy of the given string converted to

lower case. The conversion uses the current locale. This function supports multi-

byte character sets (MBCS).
a=Ansi Lower Case("Test")

AnsiCompareStr(s1,s2:string):integer

AnsiCompareStr compares S1 to S2, with case sensitivity. The compare

operation is controlled by the current locale. The return value is less than 0 if S1

is less than S2, 0 if S1 equals S2, or greater than 0 if S1 is greater than S2.

Note: Most locales consider lowercase characters to be less than the

corresponding uppercase characters. This is in contrast to ASCII order, in which

lowercase characters are greater than uppercase characters. Thus, setting S1 to 'a'

and S2 to 'A' causees AnsiCompareStr to return a value less than zero, while

CompareStr, with the same arguments, returns a value greater than zero.
b=AnsiCompareStr("Test","test")

AnsiCompareText(s1,s2:string):integer
AnsiCompareText compares S1 to S2, without case sensitivity. The compare

operation is controlled by the current locale. AnsiCompareText returns a value

less than 0 if S1 < S2, a value greater than 0 if S1 > S2, and returns 0 if S1 = S2.
b=AnsiCompareText ("Test","test")

Trim(s:string):string
Trim removes leading and trailing spaces and control characters from the given

string S.
a=Trim(" Test ")

TrimLeft(s:string):string
TrimLeft returns a copy of the string S with leading spaces and control

characters removed.
a=TrimLeft(" Test ")

TrimRight(s:string):string
TrimRight returns a copy of the string S with trailing spaces and control

characters removed.
a=TrimLeft(" Test ")

IntToStr(a:integer):string
IntToStr converts an integer into a string containing the decimal representation

of that number.

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 31

b=IntToStr(12)

IntToHex(value:integer;digits:integer):string
IntToHex converts a number into a string containing the number's hexadecimal

(base 16) representation. Value is the number to convert. Digits indicates the

minimum number of hexadecimal digits to return.
a=IntToHex (12 ,4)

StrToInt(s:string):integer
StrToInt converts the string S, which represents an integer-type number in either

decimal or hexadecimal notation, into a number.
a=StrToInt("12")

StrToIntDef(s:string;default:integer):integer
StrToIntDef converts the string S, which represents an integer-type number in

either decimal or hexadecimal notation, into a number. If S does not represent a

valid number, StrToIntDef returns Default.
a=StrToIntDef("12",1)

FloatToStr(a:float):string
FloatToStr converts the floating-point value given by Value to its string

representation. The conversion uses general number format with 15 significant

digits.
s=floattostr(1.234)

Date/Time Functions

The script language uses the following definition for date and time values: The

integral part of a value is the number of days that have passed since 12/30/1899.

The fractional part of a value is fraction of a 24 hour day that has elapsed.

Following are some examples of TDateTime values and their corresponding

dates and times:

0 12/30/1899 12:00 am

2.75 1/1/1900 6:00 pm

-1.25 12/29/1899 6:00 am

35065 1/1/1996 12:00 am

To find the fractional number of days between two dates, simply subtract the two

values, unless one of the TDateTime values is negative. Similarly, to increment a

date and time value by a certain fractional number of days, add the fractional

number to the date and time value.

EncodeDate(Year, Month, Day: Word): DateTime

Returns a TDateTime value from the values specified as the Year, Month, and

Day parameters. The year must be between 1 and 9999. Valid Month values are

1 through 12. Valid Day values are 1 through 28, 29, 30, or 31, depending on the

Month value. For example, the possible Day values for month 2 (February) are 1

through 28 or 1 through 29, depending on whether or not the Year value

specifies a leap year.
d=EncodeDate(2005,6,5)

EncodeTime(Hour, Min, Sec, MSec: Word): DateTime

Encodes the given hour, minute, second, and millisecond into a DateTime value.

Valid Hour values are 0 through 23. Valid Min and Sec values are 0 through 59.

Valid MSec values are 0 through 999. The resulting value is a number between 0

32 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

and 1 (inclusive) that indicates the fractional part of a day given by the specified

time or (if 1.0) midnight on the following day. The value 0 corresponds to

midnight, 0.5 corresponds to noon, 0.75 corresponds to 6:00 pm, and so on.
d=EncodeTime(19,5,4,200)

DecodeDate(Date: DateTime; var Year, Month, Day:
integer)
Breaks the value specified as the Date parameter into Year, Month, and Day

values.
y=0

m=0

d=0

DecodeDate(35065,y,m,d)

DecodeTime(Time: DateTime; var Hour, Min, Sec, MSec:
Word)
DecodeTime breaks the object specified as the Time parameter into hours,

minutes, seconds, and milliseconds.
h=0

m=0

s=0

ms=0

DecodeTime(1.978,h,m,s,ms)

DayOfWeek(Date: TDateTime): Integer

Returns the day of the week of the specified date as an integer between 1 and 7,

where Sunday is the first day of the week and Saturday is the seventh.
a=DayOfWeek(35065)

Date:DateTime
Use Date to obtain the current local date as a TDateTime value. The time portion

of the value is 0 (midnight).
d=date

Now:DateTime

Returns the current date and time, corresponding to the sum of the value returned

by the global Date and Time functions. Now is accurate only to the nearest

second.
t=now

DateToStr(Date: TDateTime): string
Use DateToStr to obtain a string representation of a date value that can be used

for display purposes.
DateToStr(35065.3455)

TimeToStr(Date: TDateTime): string
Use TimeToStr to obtain a string representation of a time value that can be used

for display purposes.
Time ToStr(2445 .3455)

DateTimeToStr(Date: TDateTime): string
Use DateTimeToStr to obtain a string representation of a date and time value

that can be used for display purposes.

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 33

Date Time ToStr(35065.3455)

Arithmetic Functions

Round(a:float):integer
Round function rounds a real-type value to an integer-type value.
a=Round(12.5)

Trunc(a:float):integer

The Trunc function truncates a real-type value to an integer-type value.
a=Trunc(12.5)

Dec(a:integer or float)

Dec subtracts one from a variable.
Dec(a)

Inc(a:integer or float)

Inc adds one to the variable.
Inc(a)

Random

Random returns a random number within the range 0 <= X < 1.
A=random(10)

Filehandling Functions

LoadStringFromFile(filename:string):string

Loads a file into a string.
S=loadstringfromfile(" c: \ yourpath \ myfile.txt")

SaveStringToFile(filename:string)

Saves a string into a file.
savestringtofile (s,"c: \ yourpath \ myfile.txt")

Other Functions

Beep

Beep generates a message beep
Beep

Constants

crlf

Returns a line break string (ASCII characters 13 and 10)
S=crlf

quotechar

Returns a quote character ñ

34 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

S=quotechar

colonchar

Returns a colon character ó
S=colonchar

Setting the Browser Simulation Parameters

Many characteristics of the simulated browser can be set by the user:

First, you need to note that Webserver Stress Tool simulates a browser only from

a ñserverôs point of viewò (e.g., sending the requests, etc.), but does not simulate

the rendering on the clientôs screen or the execution of client side scripts. Thus

Java applets, Javascripts, etc. are not executed (running scripts of many users

would also put excessive load on the client's CPU).

For example, a scripted inclusion of a banner ad is not processed and thus the

image request is not sent to the server. The implication is that the performance

effect of such client side portions of the web application cannot be measured by

this webserver loading/stressing technology.

Also any requests that are generated through Javascripts will not be processed,

so use the Custom URL Script to add the these URLs manually.

Browser Simulation

If you use a proxy server, select Use Proxy and enter the address and Port of

the proxy. If your proxy server requires authentication, select Use Proxy User
and enter the Username and Password.

IMPORTANT: It is not recommend ed to run tests across proxy servers,

because you will never know if you are actually testing the speed of your

webserver or the speed of your proxy server.

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 35

A specific User Agent String can be sent to the server when Use Agent is

selected. You may select a user agent string from the list or edit the string

yourself.

To add your own parameters to the HTTP request headers, enable Addtl.
Headers and enter your data in the text control.

You may set a maximum timeout for finishing the HTTP requests by selecting

Use Timeout. Enter the timeout in seconds. A good value to start with is 60

seconds (since no human user would likely wait longer than that).

To throttle the data rate through which a user accesses the server, enter a value in

kbit/s for Simulate Maximum Data Rate for Client. This can be used to

simulate users accessing the webserver through modem lines (e.g., 50 kbit/s).

If your webserver or web application requires cookies, select enable cookies.

The cookies are shown in the detailed log file when Show Cookies in Log is

selected. The cookies are stored for each user and resent to the server for the

following requests until a cookie invalidation is sent by the server.

Recursive Browsing

The features in this group should only be used on powerful client systems,

especially for testing with high load conditions, because the HTML of each

request has to be parsed completely to identify image URLs, link URLs, etc.

Recursive Browsing features can result in considerable processor load on the

client machine which could result in inexact readings for the performance of the

target server. Keep an eye on the processor load of the client during testing and

run the test with and without these features. Compare the results to determine

your client machine recursive browsing testing threshold.

By selecting Download Image URLs you instruct Webserver Stress Tool to

parse all tags from the HTML code and send a request for

each IMG URL to the server as soon as the complete HTML is received. If an

image is used several times on the page, it is requested only once.

Enabling Download EMBED, OBJECT and FLASH also downloads these

objects.

Select Show Images in Log and Show Objects in Log if you want to have

a log file entry for each image in the detailed log, otherwise only one entry is

generated stating how many images have been found and requested.

If your site uses HTML Frame tags, you must select Download
Frames/IFrames. Webserver Stress Tool then parses the HTML code for

<FRAME> and <IFRAME> tags. For each Frame URL, a request is sent to the

server. If this frame is a frameset again, additional requests are made until no

more frames are found.

Select Show Frames in Log if you want to have a log file entry for each

frame in the detailed log, otherwise only one entry is generated stating how

many frames have been found and requested.

Some sites use the Refresh meta tag as means of redirection. To follow these

redirections, select Follow ñRefreshò Meta Tag. The HTML is parsed for

<meta name=òrefreshò content=òtime;urlò> tags. As soon as a tag is found, a

request is sent to the server (the time value is not used). Note: HTTP header

redirects are always processed.

Setting Program Options

On this tab you can edit various program options:

36 ¶ Configuring Webserver Stress Tool Webserver Stress Tool

Advanced Settings

The HTML results of all requests can be written to a disk file by selecting Save
all HTML files. The file names are built from the user number and the userôs

click and request number. Note: Use with caution, this option can use a lot of

CPU resources on the test client.

The Link-Checker stores all unique URLs from all requested HTML pages

during the test run and tests all these URLs for broken links after the stress/load

test is finished. The results can be found in the log files.

On slow client machines it might help to enable Hide Stress Tool Window to

squeeze out a little more testing power (mainly because it makes sure no CPU

cycles are used for screen updates).

Logging

Webserver Stress Tool always writes a summary log file during test. For more

detailed log files, enable Write Detailed and User Logs. A detailed log (for

the entire test) and an individual log for each user's activity will be written to

disk.

Please be aware that for high traffic load tests with hundreds or even

thousands of users, detailed logging can have a serious impact on the

performance of the testing client and thus the measured values can be

incorrect. It is always a good idea to run heavy tests with and without detailed

logging to compare the results, especially keep an eye on the CPU load of the

client.

Using Write Request Log (CSV), an additional machine readable log file can

be created that has one line of data per request of the test. This option is good if

you need to process the results yourself. Note: The request log can also affect

test client performance.

Choose Store logs in a ZIP file after test to store all the resulting log files as

well as the configuration files of the test into one ZIP file for later reference. The

Webserver Stress Tool Configuring Webserver Stress Tool ¶ 37

file will be stored in the ñzipped logsò subfolder of the EXEôs path and will

show the date and time of the test in the filename.

You can immediately open the test report in your web browser or word if you

enable Open HTML Report after test or Open WORD Report after test.

Webserver Stress Tool can also write all received data to the log file. Select

Write Header to Log for all data in the HTTP headers and Write data to
Log for all HTML data of the requests.

When using Write on Error Only, only the data of requests that result in an

error are written to the log.

Local IP Addresses to use

If the machine on which you run Webserver Stress Tool has more than one IP

address, you may select which IP address should be used to simulate the

requests. We have found that for most situations for HTTP load/stress tests you

usually do not need to have more than one IP address because the server answers

all requests in the same manner regardless of the IP addresses. Only if your

website or application uses the IP address to follow the sessions of a user etc., it

is necessary to use more than one IP address.

If more than one IP address is selected, the IP addresses are used in a ñround

robinò manner for each simulated user. As the first user uses the first selected IP

address for all his requests, the second user uses the second IP address, etc.

Timer

Using the Start test at feature, you can postpone the start of the test to a

specific date and time.

38 ¶ Performance Tips&Tricks Webserver Stress Tool

Performance Tips&Tricks

Finding the Bottleneck of Your Test Setup

When running load tests on a webserver, you must make sure that you do not hit

a performance limitation of your test client or your network.

The best way to find these limits is to run a ramp test with twice or three times

the load you want to test with (or even more) and inspect the Test Clientôs
Health graph afterwards.

The graph for Network Traffic and Local CPU Usage should ramp up with

the increasing number of users. When either one hits a plateau, you have found

your limitðor the limit of the server.

E.g., if you are using a 100 Mbit network, you may see the Network Traffic

graph hitting the 100 Mbit/s bandwidth limitation of your network hardware.

To distinguish between client/network and server issues, it is a good idea to also

monitor the CPU Load/Network of the server which will also help find out what

the bottleneck is. If Webserver Stress Tool already indicates a limit but your

server is more or less idle, you need a machine with more testing power.

Also keep an eye on the Protocol Times graph. Under heavy loads sometimes

the Time for local socket can rise sharply (above 10-50 ms) which also

indicates a performance bottleneck.

Network Issues

For load and stress tests, the network connection between the test client and the

server is critical. For the connection between the server and the test client, you

must provide the full bandwidth that an equal number of real users would use

when accessing your server!

This means that you obviously cannot conduct a serious load test with 500 users

requesting a 5 MB file over a single 56kb modem connection.

Additionally, if your are running the test from a remote location, the number and

the performance of the hops (router/firewalls etc.) can influence the test. The

optimum testing environment is to run the server and client within the same

networked environment (i.e., on the same LAN).

For heavy load testing, it is the best to connect both the client and server to a

high performance network switch. Since Webserver Stress Tool on a fast PC can

easily work with more bandwidth than a 100 Mbit LAN can deliver, even a

Gigabit Ethernet may be a good idea.

For tests over internet connections like T1, DSL, etc., you have to make sure that

the amount of data created by your tests does not exceed the bandwidth of these

connections. Use a bandwidth monitoring software like PRTG Network Monitor

to monitor the bandwidth usage (www.paessler.com/prtg).

http://www.paessler.com/prtg

Webserver Stress Tool Performance Tips&Tricks ¶ 39

Usually, for performance and smaller load tests a leased line with 500 kb/s or

more should be enough, but more bandwidth will always give you more reliable

results. Furthermore, you have to make sure that the ñtravel timeò of the data is

far below the request times you measure. Otherwise, measured values will be

unreliable.

Everything below a 300 kb/s connection should be considered vague testing,

although it can give good results under some circumstances, e.g., for long

running web server scripts that only produce very little HTML code. The same

applies for modem connections.

Test Client Issues

For high loads (>250.000 clicks/h) a client machine with multi-processor (or at

least hyperthreading) is recommended.

It is also recommended to frequently defragment the disk drive that Webserver

Stress Tool is using for the logs, because the high number of files growing

steadily in small chunks can cause serious fragmentation.

40 ¶ Running the Test Webserver Stress Tool

Running the Test

After setting all desired settings for Load Pattern and Browser Settings, click on

Start Test to make Webserver Stress Tool begin executing the test.

During the test you can navigate through all settings pages, but you cannot

change the program and test settings.

You can however look at the test results already during the test.

As long as the test is active, there is a graphical view of the simulated users at

the bottom of the window. Each user is shown by a rectangular area with a color

showing the status of the user. This graph is updated every few seconds and will

therefore not show all possible states for all users (that would slow processing

down). But nevertheless, this visualization provides a good illustration of what's

going on in the test.

Also watch the status line at the bottom of the window for status information

about the test.

By clicking Abort Test you can stop the test at any time.

When the test is finished, the system will notify you with an audible sound (a

beep). You can then review the results.

Webserver Stress Tool Running the Test ¶ 41

If you have enabled Store logs in a ZIP file after test in the options, all

results have been stored into one ZIP file for later reference.

As soon as the test is finished, you will see the report in your web browser or in

Word if you have enabled Open HTML Report after test or Open WORD
Report after test in the options.

42 ¶ Reviewing Logfile Results Webserver Stress Tool

Reviewing Logfile Results

Click on Log Files to open the log file browser.

On the left you will find a list of available log files. Simply click one of the

entries to view the contents on the right.

If you enabled Write HTML Files to disk, you can also select all the HTML

files here.

All log files are saved to the "logs" subdirectory of the EXE's directory (usually

C:\Program Files\Webserver Stress Tool 8\logs).

Summary Log and Detailed Log

There are two main log files: The Summary Log and the Detailed Log.

The summary log contains only the most important results:

¶ Time and Date of test

¶ Short results for all periods

¶ Short results of complete test

¶ Glossary

The detailed log (must be enabled on the options page) contains all of the

Summary Log information and:

Webserver Stress Tool Reviewing Logfile Results ¶ 43

¶ Test Setup Data (URLs, number of users, etc.)

¶ Test process information (e.g., waiting for timer)

¶ Detailed results for all periods

¶ Failed Requests

¶ Results of complete test

¶ Glossary

¶ Locations were the log files were saved to

This log file can grow very large. Depending on your operating system,

Webserver Stress Tool may not be able to show the log file. If this is the case,

please use an external editor.

Note: Large log files cannot be opened on Windows 95/98/ME machines.

The detailed log file and the userôs log files are written to the disk almost

instantly during the test and so can be helpful in diagnosing problems in the

event of an abnormal program termination.

The summary log is written to the disk at the end of the test.

User Logs

If Detailed Log is enabled on the options page, Webserver Stress Tool writes a

log file for each user. This log files contains:

¶ Activity log and data of all clicks, frames, images, redirects,

requests, etc.

¶ Time to first byte, Time to connect, and similar data of each

request

¶ Optionally all header data, HTML data, cookie data, image URLs,

and frame URLs

¶ Select a user log in the list of log files by clicking on it with the

mouse and the file will be shown on the right portion of the

window.

Results per User

The page Results per User (Complete Test) shows the resulting numbers

for each simulated user:

44 ¶ Reviewing Logfile Results Webserver Stress Tool

The data shown is the data aggregated over the complete test.

Right click the table for a context menu and you can copy the table to the

clipboard or save it to a file:

Results per URL

The number of hits, errors, and time usage of each URL is shown on the page

Results per URL (Complete Test):

Webserver Stress Tool Reviewing Logfile Results ¶ 45

The data shown is the data aggregated over the complete test.

Right click the table for a context menu and you can copy the table to the

clipboard or save it to a file:

46 ¶ Analyzing Graphical Results Webserver Stress Tool

Analyzing Graphical Results

This section describes the various graphs that are created during the test.

Graph Basics

Most graphs use the time since the start of the test as the horizontal axis.

Several graphs use more than one vertical axis, the secondary axis are shown on

the right side of the chart.

For ramp tests, the number of users that were active at a given moment in time is

shown on the top of the graph. This axis is not linear because Webserver Stress

Tool ramps to the highest number of users at 80% of the given test time,

Usage of the Graphs

Hiding Graph Lines

Using the checkboxes in the graphôs legends, you can hide/unhide individual

lines from the chart.

Zooming/Panning Graphs

You can zoom any graph by left-clicking on the graph and dragging the mouse

from top-left to bottom-right of the area you want to zoom into. Drag the mouse

from bottom-right to top-left to zoom out again (or use the context menu to do

so).

After you have zoomed into a graph, you can right click on the graph and then

move/pan the chart.

Graphôs Context Menu

By using each graphôs context menu (right mouse click on the graph) you can

copy the graph to the clipboard, save it to disk as an image file or print it out.

Webserver Stress Tool Analyzing Graphical Results ¶ 47

Graph Click Times & Errors (per URL)

This can be considered the most important chart because it shows the average

times and the rate of errors that the simulated users have experienced when

downloading pages during the test.

For each URL, this graph shows the request times of clicks and the percentage of

errors (in the lower part of the chart). If you enable ñdownload imagesò there are

two more lines for each URL showing the average request times and errors for

the images.

This sample graph shows the results of a 400 minute ramp test with up to 1,300

users accessing two URLs of a webserver every 7 seconds. One URL is a static

HTML file (Homepage) and the other URL is a CGI script.

We can see that with the rising number of users the request times of the CGI

script (green line) increase much faster than the request times for the static

HTML page (red line).

In fact, until about 300 simultaneous users (marked with ñT1ò) the request times

for the static file donôt change much at all.

48 ¶ Analyzing Graphical Results Webserver Stress Tool

Then as the number of users crosses the 500 mark (marked with ñT2ò), we can

see that the first requests produce errors. The graph of the percentage of errors

(gray and pink line) goes up from 0% and keeps rising up to 50% until the end of

the test.

We can conclude that this server can support about 80-100 users clicking either

link every 7 seconds with an average click time of 2 seconds. With more than

100 users the request times (especially those of the CGI) increase substantially.

This server cannot support more than 500 users because with higher loads up to

50% of the requests produce errors.

Graph Click Times, Hits/s, and Clicks/s

This graph shows the average time a user waited for his request to be processed

(including redirects, images, frames, etc., if enabled), the hits per second, and the

users per clicks. The difference to the graph above is that this time the values are

calculated for all URLs together.

The following graph shows the results of the same test as in the previous section:

We can see that with more than 500 users the two lines for ñclicks per secondò

(blue) and ñhits per secondò (green) differ more and more. The reason is that hits

includes requests that produce errors, but clicks are only calculated from the

requests that were successful.

Graph Hierarchy

For each simulated request that Webserver Stress Tool sends to the server, one

arrow is shown in this chart.

Each arrow represents one hit (i.e. one HTTP request). The black arrows are

pages (i.e., HTML files), the green arrows represent images, the blue arrows

show frame,s and the red arrows show failed requests.

Webserver Stress Tool Analyzing Graphical Results ¶ 49

This sample chart shows clicks to several URLs with HTML pages (single black

arrow) and pages with frames and images (black arrow with blue arrows). There

are also some failed requests (red arrows).

The longer a request took, the further right the arrow ends. As soon as the

HTML text of a page request is received, the images are requested from the

server and shown in the chart with the green arrows.

Note the red arrows which represent failed PAGE requests.

Here is an older example of a hierarchy graph:

50 ¶ Analyzing Graphical Results Webserver Stress Tool

It shows the request hierarchy for one user to a website. The website has a

homepage URL such as ñwww.company.comñ which redirects to a frameset. In

this view, the arrow is the first request to the company URL. The request is then

redirected to a frameset page (second arrow), which consists of several HTML

pages/frames (blue arrows). The html pages of each frame then has their images

(green and red arrows).

In total a visitor of this webpage needed at least 5 seconds for the complete page

to load. Thatôs very slowé

Graph Spectrum of Click Times
This graph shows the distribution of user wait times for each run in the test.

This sample graph shows the results of a Ramp Test. The three axis are:

¶ Vertical: percentage of users

¶ Horizontal: user wait time

¶ Depth: number of users

At the beginning of the test (first bars at the front of the chart), most users get

request times below 2 seconds.

Webserver Stress Tool Analyzing Graphical Results ¶ 51

With more and more users accessing the server, the request times deteriorate.

The barôs maximum is moving from left to right with increasing depth.

In this other sample the effect is still visible, but the request times at the end of

the test are still below 5s.

The effect of this test on capacity planning is clear. Consider that the maximum

response time goal for each user should be ten (10) seconds or less. With this

goal in mind, you have to make sure that your graph has its maximum at the

"<10s" reading or betterïfor the number of users you want to be able to support.

Graph Server and User Bandwidth
This graph displays the bandwidth the server was able to deliver (as a total) as

well as the average bandwidth that was experienced by the simulated users:

52 ¶ Analyzing Graphical Results Webserver Stress Tool

In this graph we can see that the average bandwidth available per user goes down

from 360 Mbit to 80 Mbit when the number of users climbs from 1 to 100 users.

Graph Open Requests and Traffic

This graph shows the number of open requests as well as the number of sent and

received requests in comparison with the network traffic:

Graph Protocol Times

An HTTP request consists of several stages. First, the webserver name has to be

resolved into an IP address using DNS (Time for DNS), then an IP port is

opened on the server by the client to send the request header (Time to Connect).

The server then answers the request (Time to First Byte) and sends all data.

When all data is transferred, the request is finished (Click Time).

Also in this graph a line is shown for the ñtime for local socketò which is the

time that Webserver Stress Tool needed to acquire an open socket from the IP

Webserver Stress Tool Analyzing Graphical Results ¶ 53

stack of the machine it runs on. For usual tests, this value should always be in

the lower millisecond area (1-30 ms). For extreme traffic tests, this value can rise

above 50-100 ms which is a sign that the performance limits of the local

machine have been reached.

The average value of these five readings are displayed in this graph:

Graph Test Clientôs Health

For this last graph, Webserver Stress Tool constantly measures vital parameters

of the machine it runs on. It can be helpful to find out if the limits of the test

client have been reached.

Especially the line for the CPU Load (pink) should be well below 100%. If you

constantly hit values above 90% for the CPU load, the test results may be

incorrect.

Also the network traffic (blue line) should be below the physical limits of your

connection to the server.

54 ¶ Analyzing Graphical Results Webserver Stress Tool

Webserver Stress Tool Creating Reports ¶ 55

Creating Reports

Webserver Stress Tool offers two methods to export results.

You can export all resulting information into a MS Word document (MS Office

must be installed) and you can create a number of HTML files.

These reports can be created manually or automatically as soon as the test is

finished. Please enable Open HTML Report after test or Open WORD
Report after test in the options.

Report (Word)

The best way to store all results of a test into one file is to create a DOC file.

If you have Microsoft Office installed on the client machine, click on Report
(Word) after a test is finished:

Select what data you want to include in the report. As soon as you click OK,
Microsoft Word is started using OLE and the report is built. A few seconds later

you can edit, print, and save the report using all the normal functions of

Microsoft Word.

56 ¶ Creating Reports Webserver Stress Tool

Report (HTML)

Click on Report (HTML) to create a set of HTML and images files with the

results of the test. Choose an item from the menu in the left frame to navigate

through the results.

Note: The files of the HTML report are deleted whenever Webserver Stress Tool

is (re-)started or when a new test is started.

