Welcome

Welcome to Webserver Stress Tool (Freeware)

Most websites and web applications run smoothly and correctly as long as only one
user (e.g.the original developer) or just a few users are visiting at a given time. But

what happens if thousands of isaccess the website or web application at the same
time?

Using Webserver Stress Togbu can simulate various load patterns for your

webserver which will help you find problems in your webserver set up. With steadily

i ncreasing | oadcddg s(090 ywall lagdk farbd mp ttoe f i nc
server can handle before serious problems arise.

Webserver Stress Tool Ti

Contents

Welcome i
Welcome to Webserver Stress Tool (FFEEWArL)............cevuvvvvvimeeriiiiiiiinieeeeeeeeeeeeend i
Introduction: Testing Basics 5
VAT =21 1] o PP TP UTPPPTP 5
The BUSINESS VIBW.....coviiiiiiiiieie e eeeeeee ettt e e e e e e e e e e eeeans 5.

The TeChNICAl VIBW......ceiiiiiiiiieie ettt 6.

Performance, Load, Or Stress TeStNGZ.....cccviviiiieieiiicmreeeiiinss e e e e e e e e e eeeeeneeaeeeeenees 7
PerfOrmManCe TESIS......uuiiiiiiiiiiiiie ettt 7

o= To I =T PP TP TP PPUPPPITPP 7

SHIESS TOSES ..ttt e e e n e e e e e e e e e 7

= T] O =] £ PP PP TPPRIN 8

Calculation of Load and Load Pattern............cooeveeiiiiiiccce e ceeees e 8

For EXisting WeDSItEScoiiiii e 8.

FOr NEW WEDSITESo 8

Playing With NUMDEIS.......c.uuiiiiiii e 8

When Should | Start Performance TestiNg2..........coooiiiiiiieeeiiiee e 9

L] (01T T o 2 Q.
Webserver Stress Tool Features 11
KBY FRATUINBS ... ettt e et et e e e e e mmmr e e e e nean s 11

How much load can Webserver Stress Tool gaB@ra..............ccccccvvvieeeeeeeeieseecnene 11
Webserver Stress Tool can be used for various.tests...........cccvvevvieeeriesiiciciennnnns 11
TESHNG EIOMENTS ...ttt rmmee s 12

Test results can be VIEWEA.8S...........oooo i re e 12

Other FRAIUIES ...ttt ee e ettt e et e e e e e e eeebsbeeereeeeeeas 13
Installation 14
SYSIEMREQUITEMEINTS ... iitiiiii ettt s sttt e e e e nb e eeeeeas 14
Installation/DeinStallation.............coooiiiiiiiiiieee e eeeee e 14
Configuring Webserver Stress Tool 15
Selecting the Test Type and the N@NDf USerS............uueeiiiiiiiiiiiccciiiiiiiieeeeeeeeeee 15

=T S Y 01T PR PUPRTU TR PRURIPPPPRTTR 15

USer SIMUIALION.........oiiiiiiiei e e e e e e e e e e e e eeaaaees 16
Project/Scenario Comments, OPErator..........ccoviiuviiiieerieeee e e 17

Selecting the URLSs or Editing the URL SCIPL......ccooiiiiiiiiiiiiieen e 17

Webserver Stress Tool

Using SImMple URL SEQUENCES........cccoiuueeiieiiieeeiassieienneinereeaeeeeesesssssnssssessneeseeeeees 17

Choosing the URL SEQUENCIDG........uuviiiiiirieeeieieeeeeiinrneereeereeseeeeeeessnnseeeens 18

UsiNg the URL RECOIEL..........uuuiiiiiiiiiiieiieeeiiiiireireeeeeee e e e e e s e seenreneaenneeeeeees 19

Setting Up the Data Merging FEatULe.............ccooiiiirimeniiiiieee et 20
Tutorial for DAtaMErgiNg.......cuvvveieeiiiiiiiit et 20

Using Custom URL Scripts for Advanced URL SeqUENCES...........cceeeeeeivieaceeennnnn. 22
ONBEfOrECICK. ..ottt er et e e e e e e e eenen 22
OnBeforeClick SAmMPIES........coiiiiiiiie et 23
ONAFEICIICK. ..ttt e e e e e eee s 23
ONATFterClick Samples.........coooooiiiiii e 24

(O8] 7oy 0] f=1 =T o [[T S 24
OnBeforeRequest SAmMPLES...........ccccciiiiiiieeen e eee e 24
ONAREIREQUEST.......veiieiii et e e e e e e e e eeaeaees 24
OnAfterRequest SAMPIES..........uuuiiiiiiiiiiiiieeeiireeere e eeeerrere e 25
Advanced URL ScCript SAMPIES........cccccuuvriiiiiiieeieeeiiiiiniiiereeeeeeereessssessenssesseseeeeeeees 25
Reading a TOKEN from a page and reusing it on subsequent requests..25
LOAdTeSHNG SOAP SEIVELS.....uviiiiiiiiiieee e ereeer sttt rmmee s 26

URL Script FUNCLION REFEIENCE........uiiiiiiiiieeeee e 28
Global Variables..........oooo oo 28

SHNG FUNCLONS.ciiiiiiiiiiii e e 29
Date/Time FUNCLONS.ccoviiiiiie e 31
ArthMEtic FUNCHIONS........oviiiiiic e e 33
Filehandling FUNCLIONS...........oooviiiiiiie e 33

Other FUNCHIONSceiiiiiiiieiee e eee et e e 33
(O] 4153 7= 0 £ TP 33

Setting the Browser Simulation Parameters........ccceveviieeiiiieeeie e 34
Browser SIiMUIation...........cooiiiiiiiiiiieeeis e eeeree e e e e e e e 34
RECUISIVE BIrOWSING.evviiieeiiiiiiiii ettt 35

Setting Program OPLIONS..........iiuueriieeiiiieeeiiie ettt e e e e e sebree e e e s enieees 35
AVANCEA SELNGS....ceeiiiiiiiiiieeiiitiieeetie et reet e e e srbr e e e e e ees 36

(ol T[T T F PP PP PPP SR 36

Local IP ADAreSSES 10 USE......cceeeiieiiiiiiteeee e e e s s e e e ee s s nneneenes 37

LI L] S OO URTPR PP 37
Performance Tips&Tricks 38
Finding the Bottleneck of Your TeSt Setlp........ccuvviiieiiiiiiiieeiieee e 38
L= 0 QST U =R 38
TESE CHENE ISSUBS ...ttt eeee ettt e e e e s eeet et ee e e e e et aeaaeeeeeesanneeeeeeeeees 39
Running the Test 40
Reviewing Logfile Results 42
Summary Log and Detailed LOQ.........couuiiiiiiiiiiieaee et 42
USEE LOGS. c e tieeeeeeeieeiie ettt ee e e s n e et e e e e e s enemrnnnnnnennneeeeeeeees DD
RESUILS PEI USEE... ittt eeeeieb e eeeeeee e e e e e e e seemnnneeeeeee e A3
RESUIES PEI URLL ...ttt ettt nnne e e e e e A4
Analyzing Graphical Results 46
1= To] g 2T T o PP PRPT 46
Usage Of the GraphiS........cooi i 46
HIdING Graph LINES........vvviiiiiiiiiie et 46
Zooming/Panning GraphiS.........cccuuuuiiiiieiiiieaeiiiiiiitie e eeeee e 46
Graphoés Cont.eX.lo. . MeD. L. 46

Webserver Stress Tool

Contents { iii

Graph Click Times & Errors (Per URL)uvvveiiviiiieee et a7

Graph Click Times, Hits/s, and ClCKS/S.........ccvuviieiiiiiiieeeeee e, 48

Graph HIErarChy..........cooiii e e e e e e e e e e e e eenrenneeeeeesd A8

Graph Spectrum of ClICK TIMES........uiiiiiiiiiiii e 50

Graph Server and User BandWidthi..............coooiiiimmiiiiiicce e 51

Graph Open Requests and TraffiC.............coiiiiieeni e 52

Graph ProtoCol TIMES.......uuiiiiiiiiiie et 52
Graph Test Cli.ent.bs..Heal.t.ho ... 53
Creating Reports 55
=T 0 To o 7L] (o ST 55

REPOM (HTIML) .. ceteee ittt ettt e e et e e e e 56
Additional Features 58
Working with Different TeSt SCEeNArioS..........ceviiieieeeiiiiieeee e 58
CommaNd LiNE INLEITACE........uuuuiiiiiiiiiiiii ettt e 58
Running Several TestS at ONCE..........oevvviiiiiii i e e eeee e e 58

USING TOKENS.. ..ottt st et s e e e e e e e e e e et ettt emnr e e e eete st s e s eeeeeeeanenseaaaeaaeeeennns 58

Tips and Tricks 59
Check out the Paessler Knowledge Base...........ccooiiuiiiieeeiiie i 59
Recording HTTP URLs for Complex Web Applicatians.............cccoevvvvvieeeeeeeeninnnn. 59
Appendix 59
Script Syntax for URL SCHPES.....cvviiieeie e esereene e 60

BaASIC SYNTAX...eiiiiiiiiiiiiiiieee et iere ettt e e e e e e e e e eeet e e e e e et e e e e e e e e e e e e annraes 60

SCHPE SITUCTUN. ..ottt 60

1o [T 11T PP SSTRP 60

F TS [0] r= 1= 41T 0 £ 60

CharaCter SHNGS......iveveiiiiiiee e eeeeeie e e et e e e e e e e aaeeeeannees 61

COMIMEBNTS ...ttt e e e e et et eneee e e e e e et e e e eerrbba e s emesn s 61

VaNIADIES. ... e 61

[a 6 1= PP PPPRTUPPPPPPPPPY 61

N = £ T USSP 61

1S €= 1= 1 0 =]] £ OSSPSR 62

WhIlE StALEMENTS.uiiiiiiiiiiiiii e e e 62

oTo] I3 r= 1=1001<T o AT PP PP 62

{0 Sy =1 (=] 01T SRR 63

SeleCt Case StAtEMENLS.......cccveeiiiiiiiieeieeese ettt e e e s eeneeeee e eeeeeeeeeeesd 63

function and sub declaratiQn...............eeeeeviiiieeeiiiiiii e 64

Additional FUNCHONS........cooiiiiiiite e eee e 64

USETUI RFCS ...ttt 64

iv § Contents

Webserver Stress Tool

Introduction: Testing Basics

Why testing?

The Business View

Many websites today have a serious business m&smmake money. And
whet her t h atdingcudtomicomtengand groprietary services,
through advertising opportunitiear by selling retail products, these hitzhffic
websites and applications need to be up and running at all times. Because if
performance slows even a little, fickle wekeus are likely to jump quickly to a
competitords site.

The message to website owners is cléast and monitor your website!

Few websites, if any, perform exhaustive testing. Usually focused solely on
catching bugs, many websites ignore functionaliying, usability testing and
performance testird three critical elements in defining the user experience with

a website or web application. In short, webmasters and developers should not
only test for bugs, test whether the website does what it is medat to

(functionality testing) and test whether the user is able to easily accomplish tasks
and objectives on the website (usability testing), but they must also test whether
the user gets results from the website in an acceptable time (performance
testing).

Performance testing is a critical component of your website or web
applicationds overall success. From a
to ensure thatyourendu s er 86s or customer6s mouse ¢
silence. Optimize your webserver so thatthat 95% of all web requests are

processed in less than 10 seconds.

Webserver Stress Tool 915

Jakob Nielsen, one of the foremost experts on software and website usability
suggests the following performance thresholds for your website and or web
application:

Download Time Us e rView

<0.ls User feels that the system is reacting
instantaneously.

<10s The user experience is not
compromised. Although the user is
unhappy with the wait, they are still
focused on the current web page.

<10s As wait times get close to 10s, gtess
have shown that the likelihood of usel
distraction increases greatly

>10s User is most likely distracted from the
current website and loses interest.

Webserver Stress Toallows you quickly ascertain and identify performance
problems so that yocan quickly correct them to prevent user dissatisfaction and
potential loss of revenue.

Through an intuitive interface, flexible testing parameters, and comprehensive
reporting,Webserver Stress Toplovides you the tool to include performance
testing & a regular part of website and web application maintenance and
deployment.

Once your webserver has been deployed with the correct configurations (based
upon performance testing), you may also consider deploying a 24/7 monitoring
appl i cat i ®PRITG N&weokManitore(htt@di/evww.paessler.contan

help you keep a constant, vigil eye on your investment in web architecture
technology.

The Technical View

Although Webserver Stre3®ol and performance testing ireigeral solve key
business issues such astimpe, user experience, and ROI, performance testing

has a number of technical considerations to ensure that those business issues are
resolved. For example, consider the following questions

Is your webserver ppared for the traffic you are expecting?

Is your webserver prepared for increasing visitors over the months
and years to come?

1 Can your webserver survive a massive spike in user traffic (e.qg., if
your website is mentioned on national TV or your compangtiks
a newsletter to all customers and prospects)?

1 How many users can your webserver handle before users start
getting error messages or server timeouts?

1 How many seconds does it take for a visitor to your website to
receive a page after clicking on akdthUnder normal conditions?
Under heavy conditions?

Does your application or shopping cart support simultaneous users?

Are yourscripts and databases optimizedun as quickly as
possible and do they interact with each other correctly under heavy
webserer loads?

1 Is the web hosting service doing a good job?

6 T Introduction: Testing Basics

Webserver Stress Tool

http://www.paessler.com/

T I's your webserverdés bandwidth suf
1 Is your server hardware sufficient?

Performance testing, as a valuable aspect of maintaining and growing the web
portions of your business, is about answgtimese questions. To do an adequate
job of representing your company to the world with your website, you need to
discover the answers to all of these questions!

Performance, Load, or Stress Testing?

Although many network technicians use these word synongiy, there are
subtle but important differences.

Performance Tests

Performance tests are used to test each part of the webserver or the web
application to discover how best to optimize them for increased web traffic.
Most often this is done by testingri@us implementations of single web
pages/scripts to check what version of the code is the fastest.

Webserver Stress Toslipports this type of test with the ability to reeveral

(e.g. 20100)simultaneous requests on one URL and record the averagstime
process those requests. By changing your website or application code under
repeated tests, you can discover critical issues to address for optimal
performance. Usuallythis type of test is run without requesting page images in
order to concentrate thesting on the script and code itself.

Load Tests

Load tests are performed by testing the website using the best estimate of the
traffic your website needs to support.
website.

The first step is to define the maxim time it should take (from a usability and
customer experience standpoint, not a technical one) for a page to load. Once
you have determined this, you need to calculate the impact of exceeding that
maximum timé@ will you lose sales? Will you lose prosjpiee customers? A

good rule of thumb is to make certain that no website visitor waits longer than
ten (10) seconds for a web page to load.

Once this threshold has been determined, you have to calculate the anticipated
load anl load pattern for your websitehich you can then simulate through
Webserver Stress Tadbee theCalculation of Load and Load Pattern section for
details on load and load pattern calculation.

At the end of the load testou can compare the test results with your maximum
request timehreshold When some page requests take longer than the target
times or generate error messages, étéar that there is work to do the
application and webserver.

Stress Tests

Stress tests are simulated Abroydaue f or c
webserver. fAReal worldo situations 1|ik
usersi caused by a large referrer (imagine your website being mentioned on

national TVé). Another example would b

prospective cusmers that asks them to come to the website to register for a
service or request additional information. An inadvertent denial of service to

Webserver Stress Tool Introduction: Testing Basics 7

prospects who are ready to learn more about your product could have a serious
impact on your bottom line.

The purmse of a stress test is to estimate the maximum load that your webserver
can supportWebserver Stress Tooan help you learn the traffic thresholds of
your webserver and how it will respond after exceeding its threshold.

Ramp Tests

Ramp Tests are variatis of Stress Tests in which the number of users is
increased over the life of the t&strom a single user to hundredsusers By
reviewing the graphs of click times and errors, a Ramp Tests can help you
determine what maximum load a server can handikewhoviding optimal
access to web resources

Calculation of Load and Load Pattern

Calculating the load and load pattern is probably the trickiest issue in conducting
website performance tests.

First, remember that there is a difference between usersatitions, page views
and hits:

1 One user can conduct se&ktransactions (e.g., visit @mepage,
search for a product, view a prod

1 One transaction can create several page views (e.g., add products to
the shopping cargo to the checkout, enter credit card, etc.)

1 One page view can create multiple hits (e.g., framesets, images,
applets, etc. for a single webpage)

For Existing Websites

If you already have your website online, a good way to start calculating the load
and lad pattern is to use a good log file analyzettenlog files produced by

your webserver. Web log file analyzer tools will help you determine how many
people access the site per day and per hour, what pages/scripts are used how
often, etc. These logs witlelp you determine how many visitors and peigsvs

you have at specific times of the day as well as what your busiest day/time is and
what pages are most popular.

For New Websites

If you are working on a new website, you have to ascertain load anddtachp
yourself. One way to define the load pattern is:

1 Step 1: Come up with the target number of users.

T Step 2: Define a coupl eteendgerdi f f er
business professional, senior citizen, etc.) and surf from their point
of view thraugh the website. Track the web pages they access and
gather these stats.

Playing With Numbers

At the endyou should have a list of URLs and their frequency of use.

Try to answer the following question for each test scenario:

8 T Introduction: Testing Basics Webserver Stress Tool

1 How many users constitute arn@al load? How many users
constitute a peak load? How many, in each load, were
simultaneous?

How much time elapses between each user click?
What URLs are visited the most?

Are there any fipathso throuwgh the
defined or intuitve manner (through a specific sequence of URLS)
to access resources on your site.

Remember to factor into your analysis that there could be spikes in your traffic
(i.e., a holiday promotion or new advertising campaign).

Now feed this data intdvebserver 8ess Toal hit fasdtkeepyourTest o
fingers crossed!

When Should | Start Performance Testing?

The answer is simplé&‘ou cannot start performance testing early enough
when building web applications

For i ns evanmagaod ideia to étart pmrhance testing before a single

line of code is written. By testing the base technology (network, load balancer,
application, databasand weBervers) early on for the load levels you plan to
support, you can better optimize your webserver and poteraiadist business
costs (i.e., lost sales) later on. Discovering that your hardware configuration is
inadequate when the application is deployed can be very expensive to correct.
Testing the server for its maximum stresslehefore development beginsas
excellent idea.

The costs for correcting a performance problem escalate as the development
process moves forward. For instance, discovering a performance problem after
an application or website is already deployed means countless man hours to
correct theserver issu&@ man hours that were already spent configuring the
webserver (or application) the first time.

During software development, all software engineers (and the quality assurance
team) should have access to performance test tools to test theiodavifor
performance and for parallel execution problems (e.g., problems caused by
database locks or other mutexes). Software engineering managers for web
projects are realizing that each developer must be responsible for both the
functionality and performnce of code.

As soon as several web pages are working, the first load tests should be
conducted by the quality assurance team. From that point forward, performance
testing should be part of the regular testing routine each day for each build of the
softwae.

Glossary

Here are some glossary terms used very often in the manual and inside the
software:

1 Click
A simulated mouse click of a user sending a request (one of the
URLs from the URL list) to the server and immediately requesting
any necessary redirecfeames and images (if enabled).

1 Request
An HTTP request sent to the server regardless of an answer.

Webserver Stress Tool

Introduction: Testing Basics 19

Hit

A completed HTTP request (i,sent to the server and answered
completely). Hits can be the PAGE request of a "click" or its
frames, imagesetc.

Time for DNS
Time to resolve a URL's domain name using the client system's
current DNS server.

Time to connect
Time to set up a connection to the server.

Time to first byte (TFB)
Time between initiating a request and receiving the first byte of
data from theserver.

Click Time
The time a user had to wait until his "click" was finished (including
redirections/frames/images etc.).

Click Delay
The time a user needs to view the webpage he just downloaded
until he initiates the next click

User Bandwidth
The bandwdth a user was able to achieve.

Sent Requests
Number of requests sent to the server during a period.

Received Requests
Number of answers received from the server during a period.

10 T Introduction: Testing Basics

Webserver Stress Tool

Webserver Stress Tool Features

Key Features

Webserver Stress Tool simulasmywhere from a few users to several hundred
users accessing a website via HTTP/HTEP 8 e same time

Based ora set ofURLs or using a VBScripthe software simulates independent
users requesting webpages from that URL including images, frames etc.

Each user is simulated by a separate thread with its own session information (e.g.
cookies are stored individually for each user). URLs can be parameterized for
each user and theguence of URLs can be varied.

How much load can Webserver Stress Tool generate?

We have successfully tested Webserver Stress Tool with
1 more than ~500 MBit/s network load,
1 more than-1.000.000 pageiews per hour and
I uptol10.000simultaneous users

but the actual load you can achieve is highly dependent on your network
infrastucture, your server/client hardware, the file sjzesl your web
application.

Webserver Stress Tool can be used for various tests

1 Performance Testsare used to test each part of the webserver or
the web application to discover what parts, if any, ares sind
how you can make them faster. Most often this is done by testing
various implementations of single web pages/scripts to determine a
configuration of code that is the fastest.

1 Load Testsare performed by testing the website using the best
estimate bthe traffic your website must support. Consider this like
a fAreal worldo test of the websit

I StressTestar e si mul ated fibrute forcebo
excessive load on your webserver. Real world situations like this
can be created by a massive spikasers caused, innocently
enough, by a new advertising campaign.

1 Ramp Testsare used to determine the maximum threshold of users
that can be served before error messages are produced.

Webserver Stress Tool Webserver Stress Tool Features 11

1

Other custom tests are also possible, gegts to make sure that
web pages can be requested simultaneously without problems,
database deadlocks, semaphores etc.

Testing Elements

Webserver Stress Toabgregates a number of different testing elements to help
you get a holistic view of your entire website/webservetiegon
performance.

il

Click Time: A simulated usero6s
(one of the URLs from the URL list) to the server and immediately
requesting any necessary redirefitanes and images (if enabled)
The click time is calculated as ttime between when the user

clicked and when the server delivered the requested resources with
all referenced items (images etc.).

Average Click Times: The average values per URL, per, asger
website

Time for DNS: Time to resolve a URL's domain reausing the
client system's current DNS server.

Time to connect: Time to set up a connection to the server.

Time to first byte (TFB): Time between initiating a request and
receiving the first byte of data from the server

Request Time (TLB, Time to laBlyte): Time for a single HTTP
request (i.e HTML page, image, frameset etc.)

User/Server Banalidth: The bandwidth a user andserver were
able to achieve.

Sent Requests: Number of requests sent to the server during a
period.

Received Requests: Numixf answers received from the server
during a period.

Open Requests: Number of open request for a given moment

Error rates: Number of failed request per time period, per aser
per URL

Webserver Stress Togknerates the applicable data elementafo
specific test into a CS¥brmat log file for easy viewing.

Test results can be viewed as

Webserver Stress Toalso provides several ways to view results.

il

f
f
f
f
f

Several easy to use graphs
Summary Log

Detailed Log

User Log for each user

Machine readableequestog (CSV)
Raw graph data (CSV)

12 Y Webserver Stress Tool Features

Webserver Stress Tool

Other Features

1 Built-in report generator: Reports can be generated as HTML files
and MS WORD documents

1 Includes a URL recorder (complete web browser) to select the
URL(s) you want to test (rather than typing thertoia list)

1 Works on any HTTRJRL or HTTPSURL and can test any script
(CGl, ASP, PHPetc.)

1 Can also be used to test requests of larger download files (e.g.
ZIP).

1 Works with any webserver (no part of the software has to be
installed on the serverl!)

91 Includes support for
1 proxies (not for HTTPS) with optional proxy authentication
basic user authentication (username/password)

1

I useragent string

i any HTTP request header lines
1

Individual cookie handling for each simulated user,(&A§FP
SessioADS)

redirected requests and " hitpetarefresh " redirections
several IPs for the client machine (up to 5000 IPs)

data rate thralihg (e.g, to simulate users accessing the server
via a slow modem line)

9 timeouts (e.g. to simulate surfers that click awagra0
seconds without answer of the server)

1 When testing more than one URdgveral URL selection methods
can be selected ®imulate different user behavio

1 Using a VBScript the URLs used for testing and various other
parameters can be set indivally

1 Testscanrun
91 until a specified number of clicks is reached for each user
91 until a specified time has passed
Test can be started at a specified time
Optional link checker can check all URLs for validity

Test results can be stored into a ZIP for later refee

Webserver Stress Tool Webserver Stress Tool Features 13

Installation

System-Requirements

The following Windows versions are supported:
Windows XP

Windows 2003 Server

Windows Vista

Windows 7

Windows 2008 R2

= =4 =4 -4 =

1 32bit and 64bit versions are supported

Additionally, you need a TCP/IP based network and a powesfildlient
machine.

Please also refer to the Performance Tips&Tricks Section!

Installation/Deinstallation

To install Webserver Stress Tool, run getup.exe from the distributionZIP
file. It is a common setup routine that should be completelyesglfnatory.

To urinstall the software at a later time, use the Add/Remove Software applet
from Windowsd Control Panel

After deinstallation please check the installation directory (usuallprogram
files\Webserver Stress TQdbr any files that must be B#ed manually. The de
instdlation processloes not remove files that were created by the user (e.g., log
files).

14 q Installation Webserver Stress Tool

Configuring Webserver Stress

Tool

Find theWebserver Stress Tool group in your Programs Menu and select

Webserver Stress Tool to start the ppgram.

Selecting the Test Type and the Number of Users

When you startWebserver Stress Tofwr the first time you will be
automatically directed tthe Select Number of Users and Test Type
window. You can al so cl i ck onace3sehst
panel

> Webserver 5tress Tool 7 - Enterprise Edition (Site License)
File Test Help

=) o> (%] w] @l g

Save Start Test Help
Select Test Type and Number of Users - EIRESLE
: Himais S22 Webserver Stress Tool
Test Type
+ CLICKS Run Test with constant load until each users has generated a specified number of clicks
" TIME Run Test with constant load For a specified kime
" RAMP Run Test with increasing load for a specified time

Run until Clicks Per User

User Simulation

Mumber OF Users
Click Delay Seconds [~ Random Click Delay [Use "per URL" dick delay
rProject/Scenario C s, DOperator

Log Files

Graphs

CPU Load: Test Progress:

Typeo

This window allows you to enter the main test settings for the load pattern you

want to simulate.

Test Type

Webserver Stress Tooffersthreemain test types

Webserver Stress Tool

Configuring Webserver Stress Tool 15

Test Type

(* CLICKS Run Test with constant load until each users has generated a specified number of dicks
" TIME Run Test with constant load for a specified time
" RAMP Run Test with increasing load For a specified time

Run unitil Clicks Per User

1 CLICKS: the test is finished when each user has initiated the given
nunber of clicks. CLICKS tests are the right choice to test specific
URL sequences.

1 TIME: tests that run for a specified number of minutes. A timed
test is often us etdkedp@servérionderfull i n t
load for 10 hours.

1 RAMP: Ramp testslao run for a specified time, but with
increasing load from 1 user to the specified number of users which
is reached at 80% of test time. During the last 20% the full number
of users is activeA Ramp Test is a great way to find out the
limitations of yourwebserver or web application.

User Simulation

Please entehe Number Of Users Webserver Stress Toshould simulate.
This is the number of users that simultaneously use your website.

ser Simulation

Mumber OF Users

o on
II

Click Delay Seconds [Random Click Delay [Use "per URL" click delay

TheNumber of Users can be a value between 1 ar@i000. But remembe
that themaximum number of simultaneous users that casubeessfully
simulated dependsn thecomputing power of the client machine running
Webserver Stress Toahd various parameters that you set later.

Webserver Stress Tool always shows the CPU indhe statubar at the
bottom and al so generates a frclient ent he
machine runs at 100% CPUIlggdou have hit your machi ne

Next, you have to enter ti@ick Delay time for the simulated users. This
settirg is as important as tikumber of Users. The lower the delay time
between clicks, the greater the level of stress on your webserver.

Look at the fAesti mat efdlickldelagddedtingdcaskec ul at i
what load your settings will create.

Important: These two values are the most critical values you will
enter!

To create the highest possible lpa€t the delay time between clicks to 0 (zero).
This wayWebserver Stress Toulill send the next user request immediately
after the previous requestfinished. Please note: When using the value of,zero
a setting of 480 users shoulthe enough for most tests (higher values can
decrease the load because of multithreading overhead).

By enablingRandom Click Delay you can tell Webserver Stress Tool to
randomly use a delay time betweero clicks that is between 0 seconds and the
number of seconds you entereddhck Delay. This will make the test pattern
even more dynamic batlittle less reproducible.

16 9 Configuring Webserver Stress Tool Webserver Stress Tool

Project/Scenario Comments, Operator

This is a greplace to enter information about the test (i.e., parameters, reason
for test, etc.). This comment will be inserted into test reports later and can help
you to recreate the test later if necessary.

Selecting the URLs or Editing the URL Script

Click on theURLSs button in the left hand toolbar to display the Select URLs

Window:
Webserver Stress Tool T - Enterprise Edition (Site License)
File Test Help
= . =
3 = = > wl @] d
Mew Cpen Save Stark Test Help
: g - o fail JPAESSLER
- Select URLs or Edit URL Script ®® Webserver Stress Tool
il
T rURL Pattern
* Simple URL Sequence
Tesk Type)
l " Custom URL Script
-% k= fe= > o
= = # & R) Mumber of URLs: |4 =
AL AddURL Delete URL Clear URLs | URL Recorder | Data Marging
s
— LURL# |Mame |C|ick Delay [5] |URL ‘POST data {or @filename@) |Username |Passwurd |
! 1 Homepage 5 hikkp: s website, com
2 Shop Start Page 10 hkkp: s website .comfshop
3 Shap Login 5 htbp: ffwm website .comflogin - cart=1fremember=2 Usert Pass1
El COrder 10 htkp: s website .comjorder item=2&count=2 Useri Pass1
Log Files
rURL ing
Graphs " Users select URL For each click randamly
(% Users shways click the same URL (ko spreads load evenly on all URLs, set number of users to a mulkiple of the number of URLs!
" Users Follow complete sequence (top to battom) and again {if not enough URLs available)
€ Users visitfirst [%] URL(s), then random URLs, then last {Test bype CLICKS anly)
CPU Load: Test Progress:

You have two options to set the URLs for the test:

I Simple URL Sequence: For most simple testgou can simply
enter your URLs here and choose an URL sequencing option

9 Custom URL Script: For more complex testgou can also write
a VB Script that selects the WR and other parameters.

Using Simple URL Sequences

Please enter your URLs (aidf needed the other parameters for
POSTDATA, usernames and password) into the table of URLs.

b= = e . .QE
¥ & U Murnber of URLs: £ =

Add URL Delate URL Clear URLs URL Recorder | Data Marging
URL# |MName |C|ick Delay [s] |URL |POST data {or @filename@) |Username |Passw0rd |
1 Homepage 5 hittpe: s website.com
Z Shop Stark Page 10 hittpe: e website, comshop
3 Shop Login 5 httpffwww website.camflogin cark=1&remermber=2 Userl Passl
4 Order 10 hittp: v website.comforder item=2&count=2 Userl Passl

Here is a description of each field:

1 Name: Select a descriptividamefor each URL entry. This hame
wi || be used in the graphs a
iSearcho, AShopping Cart o, fi

Webserver Stress Tool Configuring Webserver Stress Tool §17

9 Click Delay: Enter the time the simulated uséllt ake t o fr ea
t he pr e v.iThesimulapduparsowill wait for this time (in
seconds) after the previous URL has finished loading until this next
URL will be clicked.

1 URL: Enter the URL using the standard format
http://servername[:port]/path?get-params. Here are some
samples:
http://www.server.com/home
http://www.server.com:8080/myfolder/myfile.php
http://www.server.com/signupform.cgi?username=name

1 POSTDATA: Usually, Webserver Stress Tool creates GET
requests. If you enter data into this column the request will be sent
as POST request using the data that you prawudestbe URL
encoded)You can also use the content of a file for the
POSTDATA by entering the filename wif@0 at t he begi n
and at the end, e.@mypostdata.txt@. Note: This file must
reside in the folder of th&ebstress8.exe file.

1 Username/Password: If you use BASIC authentication (see
Hypertext Transfer Protocel HTTP/1.0,
http://www.ietf.org/rfc/rfc1945.txtRFC 1945 for an explanation of
BASIC authentication), enter thésername andPassword for
the URL here. With BASIC authentication, the login data is sent as
part of the HTTP header in clear text. This will obviously not work
for login mechanisms that use HTML FORMSs. You have to
simulate these logins using GET/FORM data. NotTLM or
other athentications are not supportéddbte 22Don 6t mi x up
HTTP authentication and login mechanisms that use HTML forms.

1 Note: from RFC 2617: "HTTP/1.0" includes the specification for a
Basic Access Authentication scheme. This scheme is not
considered to be acgre method of user authentication (unless
used in conjunction with some external secure system such as
SSL), as the user name and password are passed over the network
ascleat ext . 0

While editing the list you can use the following buttons:

i Click Add URL to add another line for a new URL at the bottom
(you can also directly set tidumber of URLs in the editbox).
You can use up to 1000 URLs.

Click Delete URL to delete the currently selected URL
With Clear URLs you can clear the complete list

The easiesivay to get this list of URLSs is to use th&RL
recorder (see below)

1 Also theData Merging feature is explained below.

Choosing the URL Sequencing

This setting determines howebserver Stress Toaksigns the URLSs to the
users during the test.

RL Sequencing

(" Users select URL for each click randaonily
{* |sers always click the same URL (to spreads load evenly on all URLs, set number of users to a multiple of the number of URLs!

" Users Follow complete sequence (top ko bottam) and again (if naot enough URLs available)

" Users visik first URL{=), then randorn URLs, then lask (Test kype CLICKS only)

There ae 4 options:

18 9 Configuring Webserver Stress Tool Webserver Stress Tool

http://www.server.com/home
http://www.server.com:8080/myfolder/myfile.php
http://www.server.com/signupform.cgi?username=name
http://www.ietf.org/rfc/rfc1945.txt

1 Users select URL for each click randomly: Using the built
in random functionWebserver Stress Tosimply selects one of

the URLSs for each click. Depending upon your website, this can be
a good setting to create fAreal

1 Users always click the same URL: In the beginning of the
test, each user selects a URL and clicks only this URL during the

test. To spread the load evenly on all URLS, set the number of users

to the number of URLs or a multiple of that. This setting is very
useful h comparing the request times of different webpages (e.g.
with different implementations of a feature) or to find out what
pages are slower than others.

1 Users follow complete sequence: All users will use URL#1
for the first click, URL#2 for the second ck and so on. If a user
reaches the last URL he will start with URL#1 again. Use this
setting to simulate paths through your website, éogout products
into an order from a shopping cart.

1 Users visit first X URLs, then random, then last X URLSs:
All users will use the first X URLs (top to bottom). After that, the
remaining URLs are assigned randomly. For CLICKS tests you

have the additional option to set a number of URLs at the bottom of

the URL list the users should visit at the end of the test. Thigdwo
be an appropriate test pattern if you hawveehsite in whiclusers

have to login using a couple of URLSs, then surf around and log out

at the end.

Using the URL Recorder

Webserver Stress Toolf f er s a #ficlick recordero
Click onURL Recorder to start the click recorder:

« Webserver Stress Tool - URL Recorder Q@@
= = 2 v
Back Forward Stop Add URL Delete URL Clear URLs | Save URLs

LRL: IQ http:ffwww. paessler . comfwebstress/

©] PAESSLER

= .

print this page contact search BUY NOW

Home
Products
PRTG Traffic Grapher
IPCheck Server Monitor
Webserver Stress Tool
Fras Dol ate > Webserver Stress Tool
Features
Guided Tour Web Server Performance-, Load- and Stress-Test
System Requirements ¢

URL POST-DATA

http: /v, paessler.comfproducts]

http:f v, paessler.comfwebstress/

Status:

Simply enter the first URL in theIRL edit field and click orGo!. Watch the list
of URLs in the lower part of the window. Every time you click a link on the
browser window or submit a FORM, the URdlappended to the list.

If a POST request is submitted, the POST data is also saved. If a page is a
frameset, all URLSs of the frameset are added to the list.

If a click opens a new windowVebserver Stress Toulill also open a new
window and record furthericks.

Webserver Stress Tool

Configuring Webserver Stress Tool §19

w0

(o]

You may edit the list of URLs usingdd URL, Delete URL, andClear
URLs.

Please note: In the upper part of the windowh e Al nt er net Expl or
Contrd 6 i s cal |l ed whishusehthe cwrerdily installedwsrson
of IE on your system.

Setting Up the Data Merging Feature

To be more flexible with the URLs or to bypass caching mechanismsdiag.
web, application, or proxgerver in your test setup)ebserver Stress Tool
offers the possibility to merge additional dynamic data intaeleiested URLSs.

Webserver Stress Tool: Advanced Settings @

rUnique numbers in URL{s)/POSTDATA(s) ok
Use this feature to have an unique number in the URL{POSTDAT of each request {e.q. ko bypass caching

mechanisms). Simply place the placeholder "@@" in the URLIPOSTDATA string(s) and it will be replaced with a
number, The numbers are ascending and unique for each request, Choose the First number here,

[Replace "@@" in URL with ascending number starting at (1 =

rData Merging: Replace placeholders with data from CS¥ file:

Using this feature it is possible to place data from textfiles into URLs, POST-Data, Username or password,
This can be used to simulate transactions or to bypass any caching mechanisms,

Choose between one file for all placeholders of all URLs {i.e, "data.dat" in the directory of the EXE-file) or a
file for each URL {j.e. "datal.dat" for URL1, "dataZ.dat" for URLZ etc.).

The files must be comma delimited text files, The placeholders are "@1@" for column 1 of the current comma
delimited line, "@2@" for column 2 etc, For each user one line is read from the datafiles, If the end of a
datafile is reached, the file is reread From the beginning.

I™ Replace placeholders "@:x@" with data from "data.dat” (@1@ up ko @29@) Edit "data.dat"
r
r Edit "datasx, dat"

Unique numbers in URL(s): Use this feature to have a unique number in the
URL ofeachrequest(edicachebuster =@@0 to bypass

Simply place the placeholder "@@" in the URL string(s) and it will be replaced
by a numbe. The numbers are ascending and unique for all users and clicks.

Replace placeholders with data from file: Use this feature to place data
from text files into URLs, POSData, Username or password. This can be used
to simulate transactions or to bypasstiag mechanisms.

Choose between one file for all placeholders of all URLS (data.dat" in the
directory of the EXHile) or a file for each URL (i.e"datal.dat" for URL1,
"data2.dat" for URL2etc.).

You can edit the fileby clicking Edit "data.dat" andEdit "datax.dat"
respectively.

If you need to edit the files manually, please keep in mind the following. Files
must be comma delimited text files. The placeholders are "@1@" for column 1
of the current comma delimited line, "@2@" for colummt2. For each user

one line is read from the data files. If the end of a data file is reached, the file is
reread from the beginning.

Note: ff there are spaces in a colunptease use quotation marks around the data
and double quotation marks for a single @tion mark, e.g.

1,"one and two",3,4,"four and five","This "" is a quotation mark"

Tutorial for Data Merging

Letbébs assume you have three URLsS a use
your site and do something.

1 http://myserver/homepage.hifstandard homepage with a login
form)

20 T Configuring Webserver Stress Tool Webserver Stress Tool

http://myserver/homepage.htm

91 http://myserver/login.htnfPOST parameters are login/password,
this page sets a cookie)

1 http://imyserver/data.httsome GET parameters)

You want to simulate 10 different users logging into the site and going through
these JRLs.

Using Webserver Stress Tool this can be done as follows:
1 On pageTest Setup.

1 SelectTest Type CLICKS, setnumber of clicks to 3, set
Number of Users to 10

On pagdJRLs

SetNumber of URLSs to 3, selecAll Users follow complete
Sequence, Enter the three URLs

1 For URL#2 enter the following in the POSTDATA column:
username=@1@&password=@2@

1 For URL#3 change the URL like this:
http://myserver/data.htm?data=@1@

Click onData Merging

EnableRe pl ace Pl acandeodbldeerdatal.dat
for URL#1Eé

Click onEdit "Datax.dat"
Answer 'Edit data for what URL" with the value 2

Enter the username and password combinations into coRt@
and@2@ and clickOK

Again Click onEdit "Datax.dat"

Answer 'Edit data for what URL" with the value 3
Enter the data for URL#3 into colun®@1@ and clickOK
Click OK again

=A =4 =4 -4 =4

Review all the other settings
1 Run your test
At first, all 10 users send a requést URL#1 which is the plain homepage.

Then each useequestshelogin.htmURL butwith the @1@ and@2@ in the
POSTDATA field replaced by values from the file data2.dat so that every
request is sent with different login data (@1@ is replaced with datadolumn
1, @2@ for column 2).

If login.htmlsends a cookie, this cookie is stored individually for each user and
is resent with the third request..

For the third clickWebserver Stress Tool replaces @hé@ placeholder with
the strings from data3.dahus sending 10 different GBIRLS to the server
along with the cookies received in run 2.

You can examine the log files to make sure that the dadsser in the way you
expected.

Webserver Stress Tool Configuring Webserver Stress Tool 21

http://myserver/login.htm
http://myserver/data.htm

Using Custom URL Scripts for Advanced URL

Sequences

If simple URL sequenceare not flexible enough for your testing nedtien
you should consider using Custom URL Scripts to configure Webserver Stress
Tool.

On theURLs tab chooseCustom URL Script to enable this feature. A code
editor comes up where you can edit your URL Scrip

> Webserver Stress Tool 7 - Enterprise Edition [Site License)

File Test Help
= - > 7
0 = =l W w] @ 2
Maw Open Save Start Test Help
est Se Select URLs or Edit URL Script < SESLER
=~ Webserver Stress Tool
A |
= RL Pattern
" Simple URL Sequence
Test Type : N
f+ Custom URL Script
IM [=
Default Script | Test Compile Test Run
URLs 1 ' "~
= 2 ' owww webhserver stress Tool W7 v pefault and DEMO Script v+ e =
f B 3
4
5
Browser Settings 6 ' oneeforeclick
s
m & ' Is called before each "click" of a user e
2 ' this ewent can be used to set the URLs, imageurls, Postdata etc.
(ipe w0
12 'Input Farameters
Options 12 ' data.usernumber : (Integer) Number of simulated user CFirst user s #0)
14 ' dara.clickcount ! (Integer) Number of Tinished clicks (First click is #0)
= Re 15 ' data.requestcount : (Integer) Number of finished requests (first request is
1a '
R 17 'Output Farameters
@ 18 ' data.url @ (String) URL for the next click
== 13 ' dara.imageurls : (StringList) URLS of the images to request after HTML is P
Log Fil 20 ' data.postdata : (string) FOSTDATA for the next click
@) = 21 ' data.username : (5tring) USERNAME far the next click
22 ' data.password foCstringd PASSWORD for the next click
Bl K 232 ' dara.clickdelay : (integer) Time to wait before click is execute (mMillise
24 ' data.log : (string) if not empty this text is added to the user's
25
Graphs 26 Sub OnBeforeClick
z7
28 ' SETTING THE URL
23 '
20 ' here you can select the URL based on the usernumber
ERS ! if data.usernumber=0 then data.url="http:/Amurl. myserver., com' -
4 [»
CPU Load: Test Progress:

A good start is to clickDefault Scripd, then Webserver Stress Tauill load
the built in demo script.

The script language is very similar to VBScript alescription of the syntax and
a list of allowed commands can be found in the Appendix.

The scipt must define four main function®@nBeforeClick, OnAfterClick,
OnBeforeRequest, andOnAfterRequest.

OnBeforeClick

OnBeforeClick is called before each "click" of a user. This event can be used
to set the URLs, imagdRLs, Postdata etc.

Input Parametet.

data.usernumber | (Integer) | Number of simulated use(first user is #0)

data.clickcount (Integer) | Number of finished clicks (first click is #0)

data.requestcount| (Integer) | Number of finished requests (first request i
#0)

data.token (String) Use this variable to store.g, tokens from
one click or request to the next (see
Advanced Samples section below)

Output Parameters:

data.url (String) URL for the next click

22 q Configuring Webserver Stress Tool Webserver Stress Tool

data.addimageurl | (String) Adds the given URL to the list of image
URLs that are requested after HTML is
received

data.postdata (String) POSTDATA for the next click

data.username (String) USERNAME for the next click

data.password (String) PASSWORD for the next click

data.clickdelay (integer) | Time to wait before clicis executd
(milliseconds)

data.log (String) If not empty this text is added to the user's

data.soapaction | (String) If you want to test a SOAP server set this
variable to the string of your SOAPAction
(see Advanced Samples Section below)

OnBeforeClick Samples

Selecting the URL based on the usernumber

if data.usernumber=0 then data.url="http://myurl" end if
if data.usernumber=1 then data.url="http://myurl2" end if
if data.usernumber=2 then data.url="http://myurl|3" end if

Selecting the URL based ¢ime clicknumber

if data. clickcount =0 then data.url="http://myurl" end if
if data. clickcount =1 then data.url="http://myurl2" end if
if data. clickcount =2 then data.url="http://myurl3" end if

Setting the image URLs from the script (instead of using the "dmaenl
images/frames ettfeature of Weltresswhich is very CPU cycle consuming
you can tell Webserver Stress Tool the URLs it should regdiestrequesting
the main HTML AddimageURL adds each assigned URL to the list of image
URLs.

data.addimageurl=" http://my.server.com/imagel.gif*
data.addimageurl="http://my.server.com/image2.gif"
data.addimageurl="http://my.server.com/image3.gif"

Setting the Click Delay (you can set the time before this user initiates his mouse
click (in milliseconds), e.gusing arandom value)
[data.clickdelay=random*(10000+data.usernumber*40) |

Setting POSTDATA and credentials
data.postdata= "MyPostData"
data.username="username"
data.password="password"

Writing to the usero6s | ogfile

data.log="Preparing click #"+inttostr(data.clickcou nt+1)+" of user
#"+inttostr(data.usernumber+1)

Reading the POSTDATA from a file (please edit the filename/filepath for your
needs):
|data.postdata: loadstringfromfile("D: \ temp\ mypostdata ") |

OnAfterClick

OnAfterClick is called after each "click" of a usanchcan be used to do some
extended logging or to analyze the HTML code.

Input Parameters:

data.usernumber | (Integer) | Number of simulated user (first user is #0)

data.clickcount (Integer) | Number of finished clicks (first click is #0)

Webserver Stress Tool

Configuring Webserver Stress Tool {23

data.requesbunt | (Integer) | Number of finished requests (first request i
#0)

Output Parameters:

data.log (String) If not empty this text is added to the user's

OnAfterClick Samples

Writing to the userés |l ogfile

data.log="Finished click #"+inttostr(data.click count+1)+" of user
#"'+inttostr(data.usernumber+1)

OnBeforeRequest

OnBeforeRequest is called before each single HTTP Request of a user (i.e.
clicks, images, frameegtc.) and can be used to log data or to alter the HTTP
headers.

Input Parameters:

data.usarumber | (Integer) | Number of simulated user (first user is #0)

data.clickcount (Integer) | Number of finished clicks (first click is #0)

data.requestcount| (Integer) | Number of finished requests (first request i

#0)
data.requesttype | (String) Typeof Request (e.gCLICK, IMAGE,
FRAME)
Output Parameters:
data.log (String) If not empty this text is added to the
user's log

request.additionalheadq (String) Additional lines for the HTTP header
sent to the server

OnBeforeRequest Samples

Writingtot he user 6s | ogfil e
data.log="Doing a "+data.requesttype+" - request for click
#"+inttostr(data.clickcount+1)+" of user
#'+inttostr(data.usernumber+1)

Adding custom text to the HTTP Header
| request.additionalheader="MyOwnHeaderline"

OnAfterRequest

OnAfterRequest is called after each single HTTP Request of a user (i.e.
clicks, images, framestc.) and can be used to log data and parse the results.
E.g, if you need some part of the HTML code to be reused in subsequent
requeststhis is the place to extract hétring from the HTML.

Input Parameters:

data.usernumber (Integer) | Number of simulated user (first user is
#0)

data.clickcount (Integer) | Number of finished clicks (first click is
#0)

data.requestcount (Integer) | Number of finished requestdrét request

24 q Configuring Webserver Stress Tool Webserver Stress Tool

is #0)

data.requesttype (String) Type of Request (e.gCLICK, IMAGE,
FRAME)
request.htmi (String) Resulting HTML of this request (can be

raw GIF/JPG data for images)

request.receivedhead((String) Resulting HTTP Headers from the servg

request.result (String) Result of a request (e,@K, Error)
request.resultcode (String) HTTP statugode of a request (e,Q00,
404, etc)
Output Parameters:
data.log (String) If not empty this text is added to the
user's log
data.token (String) Usethis variable to storee.g, tokens

from one click or request to the next

request.additionalheadq (String) Additional lines for the HTTP header
sent to the server

OnAfterRequest Samples

Writing to the userds | ogfile
data.log="Finished request number " +inttostr(data.requestcount)+"
with resultcode "+inttostr(request.resultcode)+"

("+request.result+")"

The following code dumps HTML and headers into the log

data.log=data.log+crlf+"==header
="+crlf+request.receivedheader+c rif+"

data.log=data.log+crlf+"==html
="+crlf+request.html+crif+"

—_——

Writing the HTML (or any other data) of a request to a (ilsk Please edithe
filenameffilepath for your needs!
a=savestringtofile("d: \ temp\ Data of user number "
+inttostr(data.usernumber)+" request number "
+inttostr(data.requestcount)+".txt",request.html)
if a<>0 then data.log="Could not write file (result="
+inttostr(a)+")" end if

Advanced URL Script Samples

Reading a TOKEN from a page and reusing it on
subsequent requests

The following script shows how to read some data from the HTML of a page and
the use this data in subsequent requests:

Webserver Stress Tool Configuring Webserver Stress Tool 125

' Webserver Stress Tool V 8 *** Sample Script for Reusing a Token

' Requires Webserver Stress Tool 8 or later
Sub OnBeforeClick

if data . clickcount =0 then

data . url ="http://walldorf.paessler.com" end if
if data . clickcount =1 then

data . url ="http://walldorf.paessler.com/?test=" +data . token end if
data . log ="Preparing click #" +inttostr (data . clickcount+1) +" of

user #" +in ttostr (data . usernumber+1)
end Sub

Sub OnAfterClick
data . log =""
end sub

Sub OnbeforeRequest
data . log ="
end sub

Sub OnAfterRequest

if data . clickcount =0 then ‘we only look in the HTML of the first
click for our tags
if data . requestcount =0 the n 'we only look in the HTML of the
first request of the first click for our tags

tagbefore ="<title>"
tagafter ="</title>" ‘our tag/token delimiters

if pos(tagbefore ,request .html)>0 then
if pos(tagafter ,request .html)>0 then
tagbegin =pos (tagbefore |, request . html) +length (tagbefore)
taglength =pos (tagafter , request . html) - tagbegin
mytag =copy (request . html , tagbegin , taglength)
data . log ="FOUND TOKEN: " +mytag+ ""
data . token =mytag

else
data . log ="Closing Token not found (" +tagafter+ ")in
request number " +inttostr ~ (data . requestcount) +" with resultcode
" +inttostr (request .resultcode)+"(" +request .result+ ")"
end if
else
data . log ="Opening Token not found (" +tagbefore+ ")in
request number " +inttostr (data . requestcount) +" with resultcode
" +inttostr (request .resultcode)+"(" +request .result+ ")"
end if
end if
end if
end sub

Load-Testing SOAP Servers

With Webserver Stress Tool you can perfdoad and stress testsrfSOAP
Servers/SOAP ServiceSOAP method calls are nothing else than HTTP

requests that send an XML dataset using a POST request to a webserver and then
receive the results as an XML string.

Even though Webserver Stress Tool is syecialized in reading and writing the
XML data for these requests, you can still use it as a load generator for your
SOAP services.

This sample shows how to use Webserver Stress Toosue ssSOAP request
t o Go odpserides APl Note: Of couesyou should refrain from load
testing Googl eds webservers!

26 7 Configuring Webserver Stress Tool Webserver Stress Tool

The trickiest thingof courseis to find out the three input parameters. You must

get this information from the SOAP
are:

HTTP URL http://api.google.corsearch/beta2

SOAPACTION "urn:GoogleSearchActidn

The XML -POSTDATA for the request should be storet i file on your disk
To run a search request Googlethe XML would be

<?xml version="1.0" encoding="utf -16"?>
<soap:Envelope
xmins:soap="http://sc hemas.xmlsoap.org/soap/envelope/"

xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins:tns="urn:GoogleSearch"
xmins:types="urn:GoogleSearch/encodedTypes"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema - instance"
xmins:xsd="http://www.w3.0rg/2001/XML Schema">
<soap:Body

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<tns:doGoogleSearch>
<key xsi:type="xsd:string"> ** Pl ACE YOUR GOOGLE API ACCESS
KEY HERE *** </key>
<q xsi:type="xsd:string">paessler</q>
<start xsi ‘type="xsd:int">0</start>
<maxResults xsi:type="xsd:int">10</maxResults>
<filter xsi:type="xsd:boolean">false</filter>
<restrict xsi:type="xsd:string" />
<safeSearch xsi:type="xsd:boolean">false</safeSearch>
<Ir xsi:type="xsd: string" />
<ie xsi:type="xsd:string" />
<oe xsi:type="xsd:string" />
</tns:doGoogleSearch>
</soap:Body>
</soap:Envelope>

Having this information we can now set up the URL sdopWebserver Stress
Tool for ourtest By setting a valueok data.soapactiomve instruct Webserver

Stress Tool to actually send a SOAP

Sub OnBeforeClick

data . url ="http://api.google.com/search/beta2"
data . postdata =loadstringfromfile (" c:yourpath \ soaprequest.txt”)
data . soapaction ="urn:GoogleSearchAction"

end Sub

Sub OnAfterClick
data . log ="
end sub

Sub OnbeforeRequest
data . log ="
end sub

Sub OnAfterRequest
data . log ="
end sub

After running the test the results from Google can then be reviewed if you
enabl eHTAMBlavtea f i | es o

Webserver Stress Tool

Configuring Webserver Stress Tool 127

S

er

r

e

mlns:xsi="http: S fwrw w2 oegS L0003 ML chena-instancea "
mlns:xsd="http: /v w2 orgs 1009, ML chens " =

“S0AP-ENV:EBody:=

“n=sl:doGooglefearchBResponse xmlns:nsl="urn: GoogleSearch" S0AP-

ENV: encodingStyle="http: f schemas. xmlsoap. orgfsoap/encoding/ "=

“return xsi:type="nsl:GooglefearchResule" =

“directoryCategories xmlns:nsZ="http://schemas.xmlsoap.ory/soap/encoding/"
xsiztype="nsf:Array" nsf-arrayType="nsl:DirectoryCategory[0] ">
“fdirectoryCategqories=

“documentFiltering xsi:type="xsd:boolean">false</docunentFiltering=
“endIndex xsi:type="xsd:int"=>10< endIndexs

“zstimatel=zExact xsi:type="xsd:boolean">false</estimatalsExact>
“estimatedTotalPesultsCount

#siztype="x=sdiint"=23000< /estinatedTotal BesultsCount =

“resultElements xmlns:ns3="http: /S schemas. xmlsoap. orgfsoap/encoding/"
#siztype="ns3:Array" nsiarrayType="nsl:PBesultElement [10] "=

“item xsi:type="n=sl:ResultElement"=

=URL xsi:type=“xsd:stking”}http:ffwww.paessler.comf{fURL}

“rachediize x=zi-type="usd:string"rllk</cachediizeas

“directoryCategory xsi:type="nsl:DirectoryCategory"=

=fullWiewableName
xsittype="xsdistring"*Top/Computers/Software/Internet /site management /Monitorin
g/ fullViewablelane>

“specialBEncoding xsi:type="xsd:string"r</specialEncoding=
“fdirectoryCategqory=

“directoryTitle
#sittype="xsd:string"=4lt;bdgt ;Paesslerdlt; fhagh ;< /directoryTitles
“hostName xsi:type="xzsd:string"r</hosclanes>

“relatedInformationPresent
ziztype="xsd:boolean"=crus<s/relatedInformationPresent=

“shnippet xsi:type="xsd:string"=Power ful, easy-to-use software solutions from
Glt;bagt ;Paesslerilt; fbagh ;. MNetwork management withalt;bréagt: PETG. Network
monitoring with IPCheck Serwver Monitor. < /snippet:

“zumnmary xsi:type="xuszd:string"sProvides software to test and nonitor

Etc.

URL Script Function Reference

Global Variables

I n order to exchange datfargldbal tomeessn t he
use these global variables:

Global Variables:

global.integerl (Integer) | Free usable global integealue
global.integer2 (Integer) | Free usable global integer value
global.integer3 (Integer) | Free usable global integer value
global.integer4 (Integer) | Free usable global integer value
global.integer5 (Integer) | Free usable global integealue
global.stringl (String) Free usable global string value
global.string2 (String) Free usable global string value
global.string3 (String) Free usable global string value
global.string4 (String) Free usable global string value
globalstring5 (String) Free usable global string value
global.floatl (Floai) Free usable global float/date value
global.float2 (Floai) Free usable global float/date value
global.float3 (Fload Free usable global float/date value
global.floatt (Fload Free usable global float/date value
global.float5 (Fload Free usable global float/date value
Samples:

28 q Configuring Webserver Stress Tool Webserver Stress Tool

global.integerl=global.integerl+1

global.string1=global.string1+" MORE"

global.floatl=now

data.log="counter="+inttostr(global.integer 1)+" "+global.string1+"
time="+timetostr(global.float1)

String Functions

Copy(S; Index, Count: Integer): string

Copy returns a substring containing Count characters or elements starting at
S[Index].

| s=Copy("testtext",1,4) |

Delete(var S: string; Index, Count:Integer)

Delete removes a substring of Count characters from string S starting with
S[Index].

a="testtexttext"
Delete(a,4,4)

Insert(Source: string; var S: string; Index: Integer)

Insert merges Source into S at the position S[index].

a="testtexttext"
In sert("text",a,5)

Pos(Substr: string; S: string): Integer

Pos searches for a substring, Substr, in a string, S. Substr and S afgysring
expressions?os searches for Substr within S and returns an integer value that is
the index of the first charactef Substr within S. Pos is casensitive. If Substr

is not found, Pos returns zero.
| a=pos("sub”,"textsubtest") |

Length(a:string):integer

Length returns the number of characters actually used in the string or the number
of elements in the array.

[a= ength('t eststring") |

UpperCase(s:string) :string

UpperCase returns a copy of the string S, with the same text but withigall 7

ASCII characters between 'a' and 'z' converted to uppercase. To cohitert 8
international characters, use AnsiUpperCase instead.

| a=UpperCase("Test") |

LowerCase(s:string):string

LowerCase returns a string with the same text as the string passed in S, but with
all letters converted to lowercase. The conversion affects ebityASCII

characters between 'A' and 'Z'. To convebitdntemational characters, use
AnsiLowerCase.
[a=Lower Case('Test") |

CompareStr(sl,s2:string):integer

CompareStr compares S1 to S2, with esesesitivity. The return value is less
than 0 if S1 is less than S2, 0 if S1 equals S2, or greater than 0 if S1 is greater
than S2. The compare operation is based on-tiie@dinal value of each
character and is not affected by the current locale.

Webserver Stress Tool

Configuring Webserver Stress Tool {29

| b=CompareStr("Test","test") |

CompareText(s1,s2:string):integer

CompareText compares S1 and S2 and returns 0 if they are €@dals greater
than S2, CompareText returns an integer greater than 0. If S1 is less than S2,
CompareText returns an integer less than 0. CompareText is not case sensitive
and is not affected by the current locale.

|b=C0mpareText ("Test","test") |

AnsiUpperCase(s:string):string

AnsiUpperCase returns a string that is a copy of S, converted to upper case. The
conversion uses the current localbis function supports mulbyte character

sets (MBCS).
| a=AnsiUpperCase("Test") |

AnsiLowerCase(s:string):string

AnsiLowerCase returns a string that is a copy of the given string converted to
lower case. The conversion uses the current locale. This function supports multi
byte character sets (MBCS).

| a=Ansi Lower Case("Test") |

AnsiCompareStr(s1,s2:string):integer

AnsiCompareStcompares S1 to S2, with case sensitivity. The compare
operation is controlled by the current localbe return value is less than 0 if S1
is less than S2, 0 if S1 equals S2, or greater than O if S1 is greater than S2.

Note:Most locales consider lowease characters to be less than the
corresponding uppercase charactdiiis is in contrast to ASCII order, in which
lowercase characters are geahan uppercase charactdrsus, setting S1 to 'a'
and S2 to 'A' causees AnsiCompareStr to return a vassethan zero, while
CompareStr, with the same arguments, returns a value greater than zero.
| b=AnsiCompareStr("Test","test") |

AnsiCompareText(sl,s2:string):integer

AnsiCompareText compares S1 to S2, without case sensitivity. The compare
operation is contrééd by the current locale. AnsiCompareText returns a value
less than 0 if S1 < S2, a value greater than 0 if S1 > S2, and returns 0 if S1 = S2.
[b=AnsiCompareText ('Test","test") |

Trim(s:string):string

Trim removes leading and trailing spaces and controbchers from the given
string S.

|a:Trim(" Test ") |

TrimLeft(s:string):string

TrimLeft returns a copy of the string S with leading spaces and control
characters removed.

Ia:TrimLeft(" Test ") |

TrimRight(s:string):string

TrimRight returns a copy of the stg S with trailing spaces and control
characters removed.

|a:TrimLeft(" Test ") |

IntToStr(a:integer):string
IntToStr converts an integer into a string containing the decimal representation
of that number.

30 9 Configuring Webserver Stress Tool Webserver Stress Tool

[b=IntToStr(12) |

IntToHex(value:integer;digits:integer):string

IntToHex converts a number into a string containing the number's hexadecimal
(base 16) representation. Value is the number to convert. Digits indicates the
minimum number of hexadecimal digits to return.
[a=IntToHex (12 4) |

StrTolnt(s:string):integer

StrTolnt converts the string S, which represents an intiggernumber in either
decimal or hexadecimal notation, into a number.
[a=StrTolnt("12") |

StrTolntDef(s:string;default:integer):integer

StrTolntDef converts the string S, which represents agémype number in
either decimal or hexadecimal notation, into a numib& .does not represent a
valid number, StrTolntDef returns Default.

| a=StrTolntDef("12",1) |

FloatToStr(a:float):string
FloatToStr converts the floatifngpint value given by Value tdsi string
representation. The conversion uses general number format with 15 significant
digits.
[s=floattostr(1.234) |

Date/Time Functions

The script language uses the following definition for date and time valbes:
integral part of a value is the numbédays that have passed since 12/30/1899.
The fractional part o&value is fraction of a 24 hour day that has elapsed.

Following are some examples of TDateTime values and their corresponding
dates and times:

0 12/30/1899 12:00 am
2.75 1/1/1900 6:00 pm
-1.25 12/29/1899 6:00 am
35065 1/1/1996 12:00 am

To find the fractional number of days between two dates, simply subtract the two
values, unless one of the TDateTime values is negative. Similarly, to increment a
date and time value by a certain fractionainber of days, add the fractional

number to the date and time value

EncodeDate(Year, Month, Day: Word): DateTime

Returns a TDateTime value from the values specified as the Year, Month, and
Day parameterd he year must be between 1 and 992&lid Month vdues are
1 through 12Valid Day values are 1 through 28, 29, 30, or 31, depending on the
Month value. For example, the possible Day values for month 2 (February) are 1
through 28 or 1 through 29, depending on whether or not the Year value
specifies a leagear.
[d=EncodeDate(2005,6,5) |

EncodeTime(Hour, Min, Sec, MSec: Word): DateTime

Encodes the given hour, minusgcond, and millisecond intoQateTime value.
Valid Hour values are 0 through 23. Valid Min and Sec values are 0 through 59.
Valid MSec valuesire 0 through 999 he resulting value is a number between 0

Webserver Stress Tool

Configuring Webserver Stress Tool 131

and 1 (inclusive) that indicates the fractional part of a day given by the specified
time or (if 1.0) midnight on the following day. The value 0 corresponds to
midnight, 0.5 corresponds to nodh75 corresponds to 6:00 pm, and so on.

| d=EncodeTime(19,5,4,200) |

DecodeDate(Date: DateTime; var Year, Month, Day:
integer)

Breaks the value specified as the Date parameter into Year, Month, and Day
values.

y=0

m=0

d=0
DecodeDate(35065,y,m,d)

DecodeTime(Time: DateTime; var Hour, Min, Sec, MSec:

Word)
DecodeTime breaks the object specified as the Time parameter into hours,
minutes, seconds, and milliseconds.
h=0

m=0

s=0

ms=0

DecodeTime(1.978,h,m,s,ms)

DayOfWeek(Date: TDateTime): Integer

Returns the day of thweek of the specified date as an integer between 1 and 7,
where Sunday is the first day of the week and Saturday is the seventh.
[a=DayOfWeek(35065) |

Date:DateTime

Use Date to obtain the current local date as a TDateTime value. The time portion
of the vale is 0 (midnight).
| d=date |

Now:DateTime

Returns the current date and time, corresponding to the sum of the value returned
by the global Date and Time functions. Now is accurate only to the nearest
second.
[t=now |

DateToStr(Date: TDateTime): string

Use DateT8&tr to obtain a string representation of a date value that can be used
for display purposes.
| DateToStr(35065.3455) |

TimeToStr(Date: TDateTime): string

UseTimeToStr to obtain a string representation dinae value that can be used
for display purposes.

[Time ToStr(2445 .3455) |

DateTimeToStr(Date: TDateTime): string
Use Dat@imeToStr to obtain a string representation of a daie timevalue
that can be used for display purposes.

32 f Configuring Webserver Stress Tool Webserver Stress Tool

| Date Time ToStr(35065.3455)

Arithmetic Functions

Round(a:float):integer
Round function rounds a redype value to an integdype value.

| a=Round(12.5)

Trunc(a:float):integer

The Trunc function truncates a regpe value to an integaype value.

| a=Trunc(12.5)

Dec(a:integer or float)

Dec subtracts one from a variable.

[Dec(a)

Inc(a:integer or float)

Inc addsoneto thevariable.

| Inc(a)

Random

Random returns a random number within the range 0 <ZAX <

| A=random(10)

Filehandling Functions

LoadStringFromFile(filename:string):string

Loads a file into a string.

|S=I0adstringfromfile(" c: \ yourpath \ myfile.txt")

SaveStringToFile(filename:string)

Saves a string into a file.

| savestringtofile (s,"c: \ yourpath \ myfile.txt")

Other Functions

Beep

Beep generates a message beep

|Beep

Constants

crif
Returns a line break strifdSCIl characters 13 antD)

[S=crlf

quotechar

Returns a quote character 0

Webserver Stress Tool Configuring Webserver Stress Tool 133

| S=quotechar

colonchar

Returns a colon character o0
| S=colonchar

Setting the Browser Simulation Parameters

Many characteristics of the simulated browser can be set by the user:

= Webserver Stress Tool 7 - Enterprise Edition {Site License)

File Test Help
= 7
[= E] b Wl @) g
Mew Cpen Save Skark Test Help
e e . - - - (S ZIPAESSLER:
i Set Browser Simulation Parameters € Wabserver Stress Toal
L rBrowser Simulation
Test Type [Use Prosy: | | Port: | |
r | | Password: | |
v Use Agent: |Muzi||af5.0 {compatible; Webserver Stress Tool 7; Windows) j

Ty [Addtl, Headers:
%!I

| v Use Timeauts (Requests taking longer than this value [5] are discarded)

. [~ Simulate Maximum Data Rate for Client [kBytefs]:
7

[~ Enable Cookies [~

% rRecursive browsing {HTML parsing needs a lot of CPU power - use with caution)
e [Download Image URLs r
[Download EMBED, OBIECT and FLASH r
[~ Download Frames/IFrames r

[~ Follow "REFRESH"-Meta Tags ("HTML Meta Refresh™

Graphs

CPU Load: Test Progress:

First, you need to note théfebserver Stress Tosimulates a browser only from

a fiserverés point of viewo (e.g., send
the rendering on the clientbds screen o
Java applets, Javascripggc. arenot executed (running scripts of many users

would also put excessive load on the client's CPU).

For examplea scripted inclusion of a banner ad is not processed and thus the
image request is not sent to the server. The implication is that the performance
effect of such client side portions of the web application cannot be measured by
this webserver loading/stressing technology.

Also any requests that are generated through Javascripts will not be processed,
souse the Custom URL Script to add the thesd&.&JRanually.

Browser Simulation

If you use a proxy server, selddse Proxy and enter the address andrt of
the proxy. If your proxy server requires authentication, sélsetProxy User
and enter théJsername andPassword.

IMPORTANT: It is not recommend ed to run tests across proxy servers,
because you will never know if you are actually testing the speed of your
webserver or the speed of your proxy server.

34 q Configuring Webserver Stress Tool Webserver Stress Tool

A specific User Agent String can be sent to the server WisenAgent is
selected. You may selecuaer agent string from the list or edit the string
yourself.

To add your own parameters to the HTTP request headers, éaftille
Headers and enter your data in the text control.

You may set a maximum timeout for finishing the HTTP requests by sgject
Use Timeout. Enter the timeout in seconds. A good value to start with is 60
secondsginceno humanuser wouldikely wait longer than that).

To throttle the data rate through which a user accesses the server, enter a value in
kbit/s for Simulate Maximum Data Rate for Client. This can be used to
simulate users accessing the webserver through modem linesQekt/s).

If your webserver or web application requires cookies, seleable cookies.

The cookies are shown in the detailed log file wBBlow Cookies in Log is
selected. The cookies are stored for each user and resent to the server for the
following requests until a cookie invalidation is sent by the server.

Recursive Browsing

The features in this group should only be used on powerful clienhsyste
especially for testing with high load conditiohecause the HTML of each

request has to be parsed completely to identify image URLS, link (#Rt.s
Recursive Browsing features can result in considerable ggocéad on the

client machinevhich codd result in inexact readings for the performance of the
target server. Keep an eye on the processor load of the client during testing and
run the test with and without these features. Compare the results to determine
your client machine recursive browsitegting threshold.

By selectingbownload Image URLs you instructWebserver Stress Totd

parse all <| MG SRC=0url o> tags from th
each IMG URL to the server as soon as the complete HTML is received. If an

image is used seral times on the page, it is requested only once.

EnablingDownload EMBED, OBJECT and FLASH also downloads these
objects.

SelectShow Images in Log andShow Objects in Log if you want to have
a log file entry for each image in the detailed log, othexwisly one entry is
generated stating how many images have been found and requested.

If your site uses HTML Frame taggu must seleddownload

Frames/IFrames. Webserver Stress Totllen parses the HTML code for
<FRAME> and <IFRAME> tags. For each FramRIl a request is sent to the
server. If this frame is a frameset again, additional requests are made until no
more frames are found.

SelectShow Frames in Log if you want to have a log file entry for each
frame in the detailed log, otherwise only one gigrgenerated stating how
many frame have been found and requested.

Some sites use the Refresh meta tag as means of redirection. To follow these
redirectionsselectF ol | ow A Ref r e sThetHTMLastparsed farg
<meta name=0r ef r eds> o0t acgosn.t eMst =sdoat o nmeag; su rd
request is sent to the server (the time value is not used). Note: HTTP header
redirects are always processed.

Setting Program Options

On this tab you can edit variopsogramoptions

Webserver Stress Tool Configuring Webserver Stress Tool 35

= Webserver 5tress Tool 7 - Trial Version EJ@E|
File Test Help
= 7
[= = b w) @] i
Mew Cpen Save Start Test Help
A Set Program Options = IACSSL S
3 dran.. =22 Webserver Stress Tool
EL rAdvanced Settings
Test Type [~ Save Al HTML Files To "[user][click][request]. htm"
[Link-Checker: recard &l <a= link-URLs and check URLs after load test is completed [~ Local URLs only
[Hide Stress Tool Window (for maximum performance on slow systems)
URLs
E _\I rLogging ocal IP Adresses To Use—
v Write Detailed And User Logs I Write Headsrs To Log v10.0.0,198
Browser Settings [~ Write Request Log (CSY) [~ WWrite HTML Data To Log
| Settinas |
2 dJ v store logsin a ZIP file after test | Write HeadersfHTML On Error only
{@- Ay, v ©pen HTML Report after test [Open WORD Report after test
Timer
Cptions
e I Start Test At |14,03.2005 ﬂ |14;35;55 = Selack Al Select Mone
Graphs
CPU Load: Test Progress:

Advanced Settings

The HTML resuts of all requests can be written to a disk file by seleSiange

all HTML files. Theflenames are built from the use
click and request numbédxote: Use with caution, this option can use a lot of

CPU resources on the test client.

ThelLink-Checker stores all unique URLs from all requested HTML pages
during the test run and tests all these URLSs for broken links after the stress/load
test is finished. The results can be found in the log files.

On slow client machines it might help@oableHide Stress Tool Window to
squeeze out a little more testing povmainly because it makes sure no CPU
cycles are used for screen updates

Logging

Webserver Stress Toalways writes a summary Idide during test. For more
detailed lodfiles, erableWrite Detailed and User Logs. A detailed log (for
the entire test) and an individdab for each user's activity will be written to
disk.

Please be aware that fohigh traffic load tests with hundreds or even
thousands of users, detailed logging camave a serious impact on the
performance of the testing client and thus the measured values can be
incorrect. It is always a good idea to run heavy tests with and without detailed
logging to compare the resulespeciallykeep an eye on the CPU load of th
client.

UsingWrite Request Log (CSV), an additional machine readable fdg can

be created that has one line of data per request of the test. This option is good if
you need to process the results yourdédite: The request loganalsoaffect

test dient performance.

ChooseStore logs in a ZIP file after test to store all the resulting ldjes as
well as the configuration files of the test into one ZIP file for later reference. The

36 9 Configuring Webserver Stress Tool Webserver Stress Tool

file wildl be stored in the himdwipped | og
show the date and time of the test in the filename.

You can immediately open the test report in your web browser or word if you
enableOpen HTML Report after test or Open WORD Report after test.

Webserver Stress Tool can also writerateiveddata to the log file. 8lect
Write Header to Log for all data in the HTTP headers aWttite data to
Log for all HTML data of the requests.

When usingNrite on Error Only, only the data of requests that result in an
error are written to the log.

Local IP Addresses to use

If the machine on which you ruWebserver Stress Tobhs more than one IP
address, you may select which IP address should be used to simulate the
requests. We have found that for most situations for HTTP load/stress tests you
usually do noheed to have more than one IP addbessausehe server answers

all requests in the same manner regardless of the IP addresses. Only if your
website or application uses the IP address to follow the sessions of a yser etc.
isnecessary to use more thane IP address.

| f more than one | P address is selecte
robind manner for each simul ated user.
address for all his requests, the second user uses the second IP atddress, e

Timer

Using theStart test at feature you can postpone the start of the test to a
specific date and time.

Webserver Stress Tool Configuring Webserver Stress Tool 137

Performance Tips&Tricks

Finding the Bottleneck of Your Test Setup

When running load tests on a webseryeu must make sure that you do nitt h
a performance limitation of your test client or your network.

The best way to find these limits is to run a ramp test with twice or three times
the load you want to test with (or even more) and inspeckakeé Clientd s
Health graph afterwards.

The graoh forNetwork Traffic andLocal CPU Usage should ramp up with
the increasing number of users. When eitivehits a plateauyou have found
your limitd or the limit of the server.

E.qg, if you are using a 100 Mbit netwariou maysee the Network Traffic
graph hitting theL00 Mbit/s bandwidth limitatiolf your network hardware

To distinguish between client/network and server isstisssa goal idea to also
monitor the CPU Load/Network of the server which will also help find out what
the bottleneck idf Webserver Stress Tool already ioadtes a limitout your

server is more or less idle, you need a machine with more testing power.

Also keep areye onthe Protocol Times graph. Under heavy loads sometimes
theTime for local socket can rise sharply (alve 1050 ms) which also
indicates a performance bottleneck.

Network Issues

For load and stress tests, the network connection between the test client and the
server is criticalFor the connection between the server and the test,clant
mustprovidethe full bandwidth thatan equahumber of real users would use

when accessing your server!

This means thatou obviously canot conduct a serious load test with 500 users
requesting a 5 MB file over a single 56kb modem connection.

Additionally, if your are unning the test from a remote location, the nunamer
the performancef thehops (router/firewalls etc.) can influence the t&€sie
optimumtesting environment is to run the server and client within the same
networked environment (i.e., on the same LAN)

For heavy load testing, it the best to connect both the client and server to

high performance netwoidwitch. Since Webserver Stress Tool on a fast PC can
easily work with more bandwidth than a 100 Mbit LAN can deliver, even a
Gigabit Ethernet mayeba good idea.

For tests over internet connections like T1, D&c, you have to make sure that

the amount of data created by your tests does not exceed the bandwidth of these
connectionsUse a bandwidth monitoring software like PRIN&twork Monitor

to monitor the bandwidth usagenw.paessler.com/prjg

38 Performance Tips&Tricks Webserver Stress Tool

http://www.paessler.com/prtg

Usually, for performance and smaller load tests a leased line with 500 kb/s or
more should be enough, but more bandwidth will always give you more reliable

results. Furthermore, you have to make
far below the request times you measure. Otherwise, measured values will be
unreliable.

Everything below a 300 kb/s connection should be considered vague testing,
although itcan give good results under some circumstancesfa.¢png

running web server scripts that only produce very little HTML code. The same
applies for modem connections.

Test Client Issues

For high loads (>250.000 clicks/h) a client machinéwitulti-processor (or at
least lyperthreading) is recommended.

It is also recommended to frequently defragment the disk drive that Webserver
Stress Tool is using for the logs, because the high number of files growing
steadily in small chunks can cause serious fragation.

Webserver Stress Tool Performance Tips&Tricks {39

Running the Test

After setting all desired settings for Load Pattern and Browser Settings, click on
Start Test to make Webserver Stress Tool begin executing the test.

EEX

> Webserver Stress Tool 7 - Trial Version
File Test Help

0 = = ® [x) w] & d

Abart Test Help

1yt EIPAESSLER
2> Webserver Stress Tool

View Logfile Results

o —] Logfiles Results per User (Complete Test) Results per URL (Complete Tesk)

Test Type * Summary Log *
Detailed Log. bk {0 ME)
%‘ User 00001 bxt (0 ME)
User 00002, bxt (0 ME)
User O000Z, bxt (0 MB)
User 00004, bxt (0 ME)
Y User 00005, txt (0 ME)
User O000E. bxt (0 ME)
User 00007, txt (0 ME)
User 0000, bxt (0 ME)
=y |User 00003t (0 MB)
= J User 000101kt (0 MB)
o User 00011, txt (0 ME)
{@ Yoh) User 00012, kxt (0 MBY
: User 00013, kxt (0 MB)
User 00014, bxt (0 ME)
User 00015, txt (0 ME)
User 00016, bxt (0 MB)
User 00017.txt (0 ME)
User 00018, bxt (0 ME)
User 00019, txt (0 MB)
User 00020, bxt (0 MB)
User 00021, txt (0 ME)

Surnrary Log
24 |Completed Clicks: 953 with 0 Errors (=0,00%) ~
25 |average Click Time For 500 Users: 268 ms
26 |Successful clicks per Second: 94,57 {equals 340,438,758 Clicks per Hour)
27
28 |Results of period £4 (from 33 sec to 43 sec)
29

30 |Completed Clicks: 885 with 0 Errars {=0,00%)

31 |average Click Time For 500 Users: 274 ms

32 |successful clicks per Second: 85,87 (equals 309.114,92 Clicks per Hour)
33

34 Results of period £5 (from 43 sec to 53 sec ;i
£S5
36 |Completed Clicks: 941 with 0 Errors (=0,00%)

37 |average Click Time For 500 Users: 328 ms

38 |Successful clicks per Second: 92,62 {equals 333,443,058 Clicks per Hour)
39

40 |Results of period #£6 (from 53 sec to 63 sec J:

41

42 |Completed Clicks: 959 with 0 Errars {=0,00%)

43 |average Click Time for 500 Users: 260 ms

44 |Successful clicks per Second: 96,04 (equals 345,730,02 Clicks per Hour)
45

User 00022kt {0 ME) e
User 00023.kxk (0 MBY ¥ £ >
Simulated Users:
| Frepaing | Wating | Clicked | Images | Frames | Click Done | Emors l User Halted |

Running with 500 users. Clicks to go: 4.124

CPU Load: Test Progress: 599%

During the test yogannavigate through all settings pagkst you cannot
change the program and test settings.

You can however look at the test results already during the test.

As long as the test is active, there is a graphical view of the simulated users at
the bottom of the window. Each user is shown by a rectangular afrea aolor
showing the status of the user. This graph is updated every few seconds and will
therefore not show all possible states for all users (that would slow processing
down). But nevertheless, this visualization providegod illustration of what's
going on in the test.

Also watch the status line at the bottom of the window for status information
about the test.

By clicking Abort Test you can stop the test at any time.

When the test is finished, the system will notify you with an audible sound (a
beep). You can then review the results.

40 TRunning the Test Webserver Stress Tool

If you have enable8tore logs in a ZIP file after test in the optionsall
results have been stored into one ZIP file for later reference.

As soon as the test is finishgau will see the report in your web browsgrin
Word if you have enable@pen HTML Report after test or Open WORD
Report after test in the options.

Webserver Stress Tool Running the Test 141

Reviewing Logfile Results

Click onLog Files to open the lodjle browser.

gWehserver Stress Tool 7 - Trial ¥Yersion M= E3
File Test Help
= z
0] = =] t> (x] wl @] d
Mew Open Save Skart Test Abart Test Report: (Wword) Repart (HTML) Help
1 7 PAESSLER

TestSetup view Logfile Results <2 Webserver Stress Tool

ﬁ |Logfi|es |Rasu|ts per User (Complete Test) |Results per URL (Complete Test) ‘
Test Type m Summary Log
[Detailed Log.kxk (0 MB) 1 *+Test Logfile by Webserver Stress Tool 7.0.0.152 Trial Yersion *| 4 |
m User 00001, txt (0 MB) 2 @ 1993-2005 Paessler GrmbH, http:ffwwme paessler,com
User 00002, txk {0 MB} 3
User 00003, txt (0 ME) 4 Test run on 3/3/2005 8:16:25 PM
e User 00004, txt (0 ME) 5 43/
‘\‘ User D000S. txt (0 ME) & ** project and Scenario Comments, Operator *+
User D006, bxt {0 ME) 7
User 00007, txk {0 MB} g
Browser Settings User 00008, txt (0 ME) a
Lo 610 0 (01 i
il User 00010, txt (0 MB) 11 |Results of period #1 {from 20 sec to 30 sec): =
?"@) - User 00011.txk {0 MB) 1z
k:{@,& User D0012,txk (0 MB) 13 Complated Clicks: 795 with 0 Errors (=0,00%)
User 00013, txt (0 MB) 14 \awerage Click Time For 9,572 Users: 583 ms
Options User NON14.txt (1 MB) 15 |Successful clicks per Second: 76,37 (equals 274,939,582 Clicks per Hour)
User D015, bxt (0 ME) 16
Test Results User 00016, txt (0 MB) 17 |Results of period #2 (from 30 sec to 40 sec):
— User 00017, txt {0 MB) 18
User 00018, txt (0 MB) 19 |Completed Clicks: 829 with O Errors (=0,00%)
—— User 00019.txt (0 ME) 20 \Average Click Time for 9,572 Users: 180 ms
Log Files User 00020, txt (0 MB) 21 Successful clicks per Second: 60,25 (equals 258,%08,30 Clicks per Hour)
User 00021, txk (0 MB) 5
User 00022, txt (0 MB) 23 Results of period #3 (from 40 sec to 51 sec }:
User 00023, tet {0 MB) 51
User 00024, txt (0 MB) 25 |Completed Clicks: 860 with O Errors (=0,00%)
Graphs User 00025, txt (0 MB) 26 \Average Click Time for 9,572 Users: 179 ms
User 00026, txt (0 MB) 27 |Successful clicks per Second: 79.71 (equals 256,971.14 Clicks per Hour)
User 00027, txk {0 MB) 26
User 00028, txt (0 MB) 29 Results of period #4 (from 51 sec to 61 sec):
User 00029, txt {0 MB) 20 -
User 00030, txt (0 ME)
User 000316k comEs 7 4]] I
Test(s) dane. CPU Load: Test Progress: 100% |

On the left you will find a list of available Idies. Simplyclick one of the
entries to view the contents on the right.

If you enabledNrite HTML Files to disk, you can also select all the HTML
files here.

All'log files are saved to the "logs" subdirectory of the EXE's directory (usually
C:\Program File8Vebserver Stressool 8\logs).

Summary Log and Detailed Log

There are two main log files: Tl B®ummary Log and theDetailed Log.
The summary log contains only the most important results:

1 Time and Date of test

f
f
f

Short results for all periods
Short results of complete test

Glossary

The detailed log (must be enabled on the options page) contains all of the
Summary Log information and:

42 Reviewing Logfile Results

Webserver Stress Tool

Test Setup Data (URLs, number of usets.)
Test process information (e,gvaiting for timer)
Detailed results for all periods

Failed Requests

Results of complete test

= =4 =4 =4 -4 =

Glossary
1 Locations were the lofiles were saved to

This log file can grow very large. Depending on your operating system,
Webserver Stress Toolay not be able to show the lbig. If this is the case,
please use an external exdit

Note: Large log files cannot be opened on Windows 95/98/ME machines.

The detailed logfila n d t h e filessasewriften to lthe djskalmost
instantlyduring the test anslocan be helpful in diagnosingoblems in the
event of an abnormal progretermination.

The summary log is written to the disk at the end of the test.

User Logs

If Detailed Log is enabled on the options pay®ebserver Stress Towlkrites a
log file for each user. This lofijles contains:

91 Activity log and data of all clicks, frenes, images, redirects,
requestsetc.

I Time to first byte, Time to conne@nd similar data of each
request

1 Optionally all header data, HTML data, cookie data, image URLs
and frame URLs

1 Select a user log in the list of Idiges by clicking on it with tle
mouse and the file will be shown on the right portion of the
window.

Results per User

The pageResults per User (Complete Test) shows the resulting numbers
for each simulated user:

Webserver Stress Tool

Reviewing Logfile Results 143

& webserver Stress Tool 7 - Trial Yersion

File Test Help
L] = = ‘ b () w) @] d
New Open Save Start Test Abark Test Report (Word) Report {(HTML) Help
. T . 145 EIPAESSLER
Test Setup View Logfile Results <2 Webserver Stress Tool
g Logfiles | Results per User [Complete Test) |Result5 per URL (Complete Test) |
Test Type User Ma, Clicks |Hit5 |Em:|rs |ng. Click. Time [ms] |Eytas |kbit,|’s |CUUkiBS | S
@‘h‘ Hz 1 0 154 1,675 97.43
z 2 1 o 158 1,875 95.19
URLs 3 z 1 i 234 1,675 54,05
@ 4 2 1 o 178 1,875 84,37
’ S| 2 1 o 237 1,675 83,36
Browsar Settings 6 2 1 0 154 1,575 97,28
Settings 7 2 1 0 165 1,875 an.a4
@}:@j} g 2 1 o 160 1,875 93.96
a 2 1 o 138 1,875 79.80
Cptions 10 2 1 i 175 1,675 2551
11 z 1 o 239 1,675 82,82
"““‘ 12 Z 1 o 154 1,675 51,568
== 13 2 1 o 253 1,675 59.35
Log Files 14 2 1 o 232 1,875 64,71
15 2 1 o 184 1,875 81.67
16 2 1 o 122 1,675 122,58
Graphs 17 z 1 o 193 1,675 77,86
18 z 1 a 140 1,675 106.94
19 z 1 o 201 1,875 7472
20 2 1 o 150 1,875 100.07 =
s 4 PR co
Test(s) done. CPU Load: Test Progress: _|

The data shown is the data aggregated over the complete test.

Right click the table for a context menu and you can copy the table to the
clipboard or save it to a file:

Copy to Clipboard

Save To HTML file...

Results per URL

The number of hits, errgrand time usage of each URL is shown on the page
Results per URL (Complete Test):

44 | Reviewing Logfile Results Webserver Stress Tool

@ Webserver Stress Tool 7 - Trial Yersion

Fle Test Help

= P
0 = = L
Mew Qpen Save Skark Test Abark Test
Test Setup

w @]

Report {Word) Report {HTML)

g

Help

EIPAESSLER

View Logfile Results <22 Webserver Stress Tool

|Lngfilas |Results per User (Complete Test) |Rasu|ts per URL {Complete Test)

Test Type URL Ko, |Name |C|icks |Errors |Errors [%] | Time Spent [ms] |Avg. Clic]
Homepage 7,048 0 0.00 1,621,452 230

2

URLs

v

Browser Settings

Settings
L]
Options

Log Files

Graphs

L3

Tesk(s) done, CPULoad: Test Progress: _|

The data shown is the datagaggated over the complete test.

Right click the table for a context menu and you can copy the table to the
clipboard or save it to a file:

Copy to Clipboard

Save To HTML file...

Webserver Stress Tool

Reviewing Logfile Results {45

Analyzing Graphical Results

This section describes the various graphsdhatcreated during the test.

Graph Basics

Most graphause the time since the start of the test as the horizontal axis.

Several graphs use more than one vertical axis, the secondary axis are shown on
the right side of the chart.

For ramp testghe number of users that were active at a givemend in time is
shown on the top of the graph. This axis is not linear because Webserver Stress
Tool ramps to the highest number of users at 80% of the given test time,

Usage of the Graphs

Hiding Graph Lines

Using the c¢heckboxgmsucanhidefurthide igividupih oés | e
lines from the chart.

| — Click Time [ms] [] — Clicks per Second [w] — Hits per Second |

Zooming/Panning Graphs

You can zoonanygraphby left-clicking on the graph and dragging the mouse
from topleft to bottomright of the area you want to zoom into. Drag the mouse
from bottomright to topleft to zoom out agaifor use the context menu to do
S0).

After you have zoomed into a grapiou can right click on the graph and then
move/pan the chart.

Graphoés Context Menu

By using each graphoés context menu (ri
copy the graph to the clipboarsiave it to disk as an image fibe print it out

Copy Graph To Clipboard

Save Graph as Bitmap (BMP)...
Save Graph az Metafile (WMF)...
Print Graph

Zoom Cut

46 T Analyzing Graphical Results Webserver Stress Tool

Graph Click Times & Errors (per URL)

This can be considered the most important chart because it shows the average
times and the rate of errors that the simulated usersehxgegienced when
downloading pages during the test.

For each URL, this graph shows the request times of clicks and the percentage of

errors(in the lower part of the charffyouenah e Adownl oad i mage:¢
two more lines for each URL showing theerage requesimes and errors for
the images.

Click Times and Errors (per URL)

Active Users
(48 120 224 210414 509604 599 704 BEQ 08 1100 12536 1300 1300
RS . ! h h

¥ — Req-Times: Homepage
30,000 ¥ — Req-Times: CaI-BIM
¥ — Errors: Homepage

) ¥ — Errors: CGEI-EIN

£, 24,000

[9] sdouaz

T
[=]

T T T T
i 5,000 10,000 15,000 20,000
Time Since Start of Test [5]

Test Type: RAMP (run test for 400 minutes)
User Simulation: mmp test with up to 1,300 simultaneous uzers - 7 zeconds between clicks

f} 1 PAESSLER
€2 Webserver Stress Tool
This samplegraphshows the results of400 minute ramp teswith up to 1300
users accessirntgvo URLs of a webservavery 7 second©ne URL is a static
HTML file (Homepage) and the other URLasCGIscript.

We can see that with the rising number of users the request times of the CGil

script (green line) increase much faster than the request times for the static
HTML page (red line).

Infactunt i | about 300 si mult anequesttimasser s
for the static file dondt change much

Active Users
(43 128 224 319474 509 604 699 794 BER 974 {100 1236 1300 1300
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E
[

a

I 14,000

w 12,000

(=

m

5

=

L=%

‘LUUD' Tl

T2 Fz0

[%] 540443

T
=

T T T T
o 5,000 10,000 15,0000 20,000
Tine Since Skart of Test [5]

Webserver Stress Tool Analyzing Graphical Results 147

Then as the number of wusers c¢cwexanses t h
see that the first requegiroduce errors. The graph of the percentage of errors
(gray and pink line) goes dppm 0% and keeps rising up to 50% until the end of
the test.

We can conclude that this sengam support about 8000 users clicking either
link every 7 seconds with an average click time of 2 seconds. With more than
100 users the request times (especially tlid¢ee CGl) increase substantially.

This server camot support more than 500 users because with higher loads up to
50% of the requests produce errors.

Graph Click Times, Hits/s, and Clicks/s

This graph shows the average time a user waited for his requesprocessed
(including redirects, images, framesc., if enabled), the hits per secoadd the

users per clicks. The difference to the graph above is that this time the values are
calculated for all URLs together.

The following graph shows the resutif the same test as in the previous section:

Click Time, Hits/s, Users/s (all URLs)

Ackive Users
047 95156 231 706 300 455 530 604 679 754 528 007 OFF 1058 1168 1270 1300 1300 1300

soonn T
28,000
26,000 40
24,000
22,000
— 20,000
E, 18,0004
£ 16,000
F 14,000
% 12,000
10,0009
£,000 4
£,000
4,000 4
2,000

o

= &n B K o8
s{syID - 5fs5IH

T
o

o

T T T T
u] 5,000 10,000 15,000 20,000
Time Since Start of Test [s]

||7 — Click Time [ms] W — Clicks per Second W — Hits per Second |

Test Type: RAWP (run test for 400 minutes)
Uzer Simulation: amp test with up to 1,300 simuftaneous users - 7 seconds between clicks

We can see that with more than 500 wuse
(blue) and Ahits per secondo (green) d
includes requests that produce errors, hokslare only calculated from the

requests that were successful.

Graph Hierarchy

For each simulatecequesthatWebserver Stress Tosénds to the server, one
arrow is shown in this chart.

Each arrow representse hit (i.e. one HTTP request). The bladciows are
pages (i.e. HTML files), the green arrows represémiages, the blue arrows
show frames and the red arrows show failed requests.

48 7 Analyzing Graphical Results Webserver Stress Tool

Hierarchy and Times of All Hits

Request Hierarchy
i

[
1

5.000 10.000 15.000 20,000 25.000
Time Since Start of Test [ms]

| M Pages M Images [v] B Frames [v] B Errors |

Test Type: CLICKS {run t=st until § clicks par usar)
User Simulation: 1 simultaneous users - 1 seconds between clicks

Py TIPAESSLER
€2 Webserver Stress Tool

This sample chart shovedicks to several URLs witll TML pages (single black
arrow) and pages with frames and gea (black arrow with blue arrows). There
are also some failed requests (red arrows).

Hierarchy and Times of All Hits

Request Hierarchy
i

[y
!

T T T T T
23.000 23,500 24,000 24,500 25.000 25.500
Time Since Start of Test [ms]

| MW Pages W Imzges [¢] W Frames [] W Errors |

Test Type: CLICKS {run test until § clicks per user)
Usar Simulstion: 1 simultaneous wsers - 1 ssconds between clicks

P 7 PAESSLER
2> Webserver Stress Tool

The longer a request took, the further right the arrow ends. As soon as the
HTML text of a page request is received, the images are requested from the
server and showim the chart with the green arrows.

Note the red arrows which represent failed PAGE requests.

Here isan olderexample of dierarchygraph

Webserver Stress Tool Analyzing Graphical Results 49

Hierarchy and Times of All Requests

Request Hierarchy
o

T T T T T T T T T
00 1.000 1.500 2.000 2500 3.000 3500 4.000 4.500
Time Since Start of Test [ms]

| EE Pages B |mages WM Frames EE Errors l

It shows the request hierarchy for one user to a website. The website has a
homepage URL such diswww. ¢ o mpfia nwh.iccohom r edi rects to
this view, the arrow is the first request to the company URL. The requhbsnis

redirected to a frameset page (second arrow), which consists of several HTML
pages/frames (blue arrows). The html pages of each framéakeheir images

(green and red arrows).

In total a visitor of this webpage needed at least 5 seconds for the complete page
to load. Thatés very sl owé

Graph Spectrum of Click Times

This graph shows the distribution of user wait times for each run ieshe t

Spectrum of Click Times

“Hovw many Users waited for o long Under what Ioad to compiste & cick?”

_\“—ﬁ

User Wait Tine

fide Oy st 1000 Bems were gianhed
Test Tyne: FRAMP (s test for 400 ninutes)
tser Sineation: i test with up to 1,300 SiUkNEONS USETS - 7 S200RdS between oSS

; PAESSLER
2 Webserver Stress Tool

This sample graph shows the results of a Ramp Thstthree axis are:
9 Vertical: percentage of users
1 Horizontal: user wait time
1 Depth:number of users

At the beginning of the testfist bars at the front of the charthost users get
request timepelow 2 seconds.

50 1 Analyzing Graphical Results Webserver Stress Tool

[={g=3
wEnk

% of us
cwoRBRENS

;

L

e
User Wait Tirie™

With more and more users accessing the setlverrequest times deteriorate.
The bardés maxi mum is moving from | eft

In this other sample the effect is still visible, but the request times at the end of
the test are still below 5s.

Spectrum of Click Times

“"How many users waited for how long under what load to complete a click?”

% of users

Number of Users

a2

=3
User Wait Tme =

Note: Only first 1000 ftems were graphed
Test Type: RAMP {run test for 200 minutes)
Uiser Simulation: ramp test with up to 300 simultansous users - 12 seconds between clicks

IQ:;! Webserver StrLersgs%gRl
The dfect of this test on capacity planning is clear. Consider that the maximum
response time goal for each user should be ten (10) seconds or less. With this
goal in mind, you have to make sure that your graph has its maxantia
"<10s" reading or bettéfor the number of users you want to be able to support.

Graph Server and User Bandwidth

This graph displaythe bandwidththe server was able to deliver (as a total) as
well as the average bandwidth that was experiencedebsimulated users:

Webserver Stress Tool Analyzing Graphical Results 51

t

Server and User Bandwidth

Active Users
¢ 4 B IZISIRERRe R0 I FFII444R 5T 5o R0 ee 0 FR A B0 B BR BT 950 Jo0 Jo0 g
P il | |

400,000 350,000
— 330,000 300,000 =
o) =
- 300,000 k250,000 i
<
35 250,000 &
2 200,000 5;
EU 200,000 z
@ 150,000 =
& 150,000 =
* =4
o 100,000 =
100,000 N
50,000 [0,000
o T T T T T T T T T o
0 20 40 &0 an 100 120 140 160
Time Since Start of Test [s]
||7 — Server Bandwidth [khitfs] W — &wvg. User Bandwidth [khit/s] |
Test Type: RAWP (un test for 2 minutes)
User Simulation: mmp test with up to 100 simultaneous users - 2 seconds between clicks
PAESSLER

In this graph we can see that the average bandwidilahle per user goes down
from 360 Mbit to 80 Mbit when the number of users climbs from 1 to 100 users.

Graph Open Requests and Traffic

This graph shows the number of opequestsas well agthe number of sent and
received requesia comparison with theetwork traffic:

Open Requests & Transferred Data

Active Lsers
FESG 22 204 DF5 567448 SR 17 697 FFS BeL 037 {052 114Y 1256 1300 1300 1509
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

]
1,100 700

1,000 F
a0 F&00 s]
v 800 w El
& (=00 2 fao 2
& 700 £ o,
g 600 Feon B [25 &
o = [= %
< 500 = g B
z faon & (20 8
& 400 = 2
R L]
300 200 d
200 1o

100 L

R

T T T T
5,000 10,000 15,000 20,000
Tire since skark of test [5]

[+ — Open Requests W — Sent Requests per secand
[— Received Requests per second W — Mebwark Traffic [khit)'s]

Test Type: FAMP (un test for 400 minutes)
User Simulation: ramp test with up to 1,200 simultaneous uzers - ¥ seconds between clicks

Graph Protocol Times

An HTTP request consists of several stages. First, the webserver name has to be
resolved into an IP address using DNS (Time for DNS)) #relP port is

opened on the server by the client to send the request header (Time to Connect).
The server then answers the request (Time to First Byte) and sends all data.
When all data is transferred, the request is finished (Click Time).

Alsointhisg aph a I ine is shown for the Atinm
time that Webserver Stress Tool needed to acquire an open socket from the IP

52 I Analyzing Graphical Results Webserver Stress Tool

stack ofthe machine it runs on. For wuess, this value should always be in
the lower millisecond area {30 ms). For extreme traffic testshis value can rise
above 50100 ms which is a sign that the performance limits of the local
machine have been reached.

The average value of thefiee readings a displayed in this graph:

Protocol Times for all URLs

Active Users
CRFBZ 143211 278 346 474 482 5500 518 686 754 B2T FEF 957 {039 {134 1229 1300 1300 1300 1300
e 1 L 1 1 1 1 h

28,000
26,000
24,000
22,0004
20,000
_ 18,000
216,000
o 14,000
£ 12,000
= 10,000
g,000
£,000
4,000
2'000 MWWW
o] A

T T T T
0 5,000 10,000 15,000 20,000
Tire Since Stark of Tesk [5]

¥ — cClick Time W — Time to First Byte W — Time to Connect
[— Time For DS W

Test Type: RAWP (un test for 400 minutes)
U=zer Simulation: mmp test with up to 1,300 simultaneous users - 7 seconds between clicks

Graph Test Clientos Heal th

Forthis last graphWebserver Stress Tool constantly measures vital parameters
of the machine it runs on. It can be helpful to find out if the limits of the test
client have been reached.

Especially the line for the CPU Load (pink) should be well below 100¢6u
constantly hit values above 90% for the CPU |dhd test results may be
incorrect.

Also the network traffic (blue line) should be below the physical limits of your
connection to the server.

Webserver Stress Tool Analyzing Graphical Results 53

Transferred Data & System Memmory & CPU Load

Active Users
Q47 FI6 FR7 ZRG 367448 536 018 FO6 FRRRER BT J05R IS 1290 1300 1340
Mt i iiriteir i h h | h h

| 100
1,640 ;gg ”
1 o
= 1,630 besn i
E 1,620 600 o (80
= 550 3 Loge, o
E 1,610 Feoo % e &
D F 3 H
= 1,600 450 3 © o
£ b400 o Foows =
+ 1,590 Faso & o
A baon o [40% &
1,880 500 = =
5 F250 = fane B
= 1,570 Fzo0 .7
m |- &7
& 1,560 150 (0%
Flo0 Fipes
1,550 &=
“oes

T T T T
5,000 10,000 15,000 20,000
Time since start of test []

||7 — Systemn Memary [MB] W — Mebwark Traffic [khit)s] W — Local CPU Load [%:] |

Test Type: RAP (run test for 400 minutes)
User Simulation: ramp test with up to 1,300 simultaneous uzers - 7 seconds between clicks
Py JPAESSLER
=
& Webserver Stress Tool

54 q Analyzing Graphical Results Webserver Stress Tool

Creating Reports

Webserver Stress Tooffers two méhods to export results.

You can export all resulting information into a MS Word document (MS Office
must be installed) and you can create a number of HTML files.

These reports can be created manually or automatically as soon as the test is
finished. Pleae enabl®©pen HTML Report after test or Open WORD
Report after test in the options.

Report (Word)

The best way to store all results of a test into one file is to create a DOC file.

If you have Microsoft Office installed on the client machine, cliciReport
(Word) after a test is finished:

Export Results to MS Word E2
rSelect Items To Include In Report o I

¥ araph "Click Times & Errors (per URLY"
v Graph "Click Times, Hitss & Clicks/'s (all)" Cancel |
[+ traph "Hierarchey and Times of Al Requests”
W taraph "cClick Tirme Spectrom”

[Graph "Wolume & Bandwidth"

[Graph "Open Requests & Traffic"

|v Graph "Protocol Times"

¥ Summaty Log
[~ Detailed Log

Select whatlata you wanto include in the report. As soon as you cliok,
Microsoft Word is started using OLE and the report is built. A few seconds later
you can edit, printand save the report using all the natfunctions of

Microsoft Word.

Webserver Stress Tool Creating Reports 155

Report (HTML)

Click onReport (HTML) to create a set of HTML and images files with the
results of the tesChoose an item from the menu in the left frame to navigate
through the results.

Note: The files of the HTML repoare deleted whenever Webserver Stress Tool
is (re-)started or when a new test is started.

56 q Creating Reports Webserver Stress Tool

